Advertisement

Hydrobiologia

, Volume 721, Issue 1, pp 9–22 | Cite as

Methane emissions from Mexican freshwater bodies: correlations with water pollution

  • Rodrigo Gonzalez-Valencia
  • Armando Sepulveda-Jauregui
  • Karla Martinez-Cruz
  • Jorge Hoyos-Santillan
  • Luc Dendooven
  • Frederic Thalasso
Primary Research Paper

Abstract

The literature concerning methane (CH4) emissions from temperate and boreal lakes is extensive, but emissions from tropical and subtropical lakes have been less documented. In particular, methane emissions from Mexican lakes, which are often polluted by anthropogenic carbon and nutrient inputs, have not been reported previously. In this work, methane emissions from six Mexican lakes were measured, covering a broad range of organic inputs, trophic states, and climatic conditions. Methane emissions ranged from 5 to 5,000 mg CH4 m−2 day−1. Water samples from several depths in each lake were analyzed for correlation between water quality indicators and methane emissions. Trophic state and water quality indexes were most strongly correlated with methane fluxes. The global methane flux from Mexican freshwater lakes was estimated to be approximately 1.3 Tg CH4 year−1, which is about 20% of methane and 4.4% of total national greenhouse gas emissions. Data for untreated wastewater releases to the environment gave an emission factor of 0.19 kg CH4 kg−1 of Biochemical Oxygen Demand, which is superior to that previously estimated by the IPCC for lake discharges. Thus, the large volume of untreated wastewater in Mexico implies higher methane emission than previously estimated.

Keywords

Eutrophication Methane emission Trophic state index Tropical lakes Water quality 

Notes

Acknowledgments

This work was financially supported by the ‘Mexican National Council of Science and Technology (CONACYT) and the Ministry of Environment and Natural Resources (SEMARNAT) through project grant No. 23661. Authors Rodrigo Gonzalez-Valencia, Armando Sepulveda-Jauregui, Karla Martinez-Cruz, and Jorge Hoyos-Santillan received grant-aided support from CONACYT (scholarship numbers 266244, 203709, 233369, and 203591, respectively). The authors are thankful to Karina Gutierrez and Alejandro Olvera from the Municipality of Cuautitlan Izcalli. The authors also thank J.M. Islas-Maitret and Adrian Barrios from Bioser, for technical assistance in sampling the tropical lakes.

References

  1. Alcocer, J. & F. W. Bernal-Brooks, 2010. Limnology in Mexico. Hydrobiologia 644: 15–68.CrossRefGoogle Scholar
  2. APHA, 1989. Standard Methods for the Examination of Water and Wastewater, 17th edn. American Public Health Association, Washington, DC.Google Scholar
  3. Barrera, G. & I. Wong, 2007. Aspectos sobre la contaminacion de las presas. In Arredondo, J. L., G. Diaz & J. Ponce (eds), Limnologia de Presas Mexicanas. Aspectos teoricos y practicos. S. A. A. Editor, Mexico, DF: 609–631.Google Scholar
  4. Bastviken, D., J. Cole, M. Pace & L. Tranvik, 2004. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles 18: GB4009.Google Scholar
  5. Bastviken, D., J. J. Cole, M. L. Pace & M. C. Van de Bogert, 2008. Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. Journal of Geophysical Research – Biogeosciences 113: G02024.CrossRefGoogle Scholar
  6. Bastviken, D., A. L. Santoro, H. Marotta, L. Q. Pinho, D. F. Calheiros, P. Crill & A. Enrich-Prast, 2010. Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. Environmental Science & Technology 44: 5450–5455.CrossRefGoogle Scholar
  7. Bastviken, D., L. J. Tranvik, J. A. Downing, P. M. Crill & A. Enrich-Prast, 2011. Freshwater methane emissions offset the continental carbon sink. Science 331: 50.PubMedCrossRefGoogle Scholar
  8. Bellido, J. L., E. Peltomaa & A. Ojala, 2011. An urban boreal lake basin as a source of CO(2) and CH(4). Environmental Pollution 159: 1649–1659.CrossRefGoogle Scholar
  9. Bolpagni, R., E. Pierobon, D. Longhi, D. Nizzoli, M. Bertoli, M. Tomaselli & P. Viaroli, 2007. Diurnal exchanges of CO2 and CH4 across the water–atmosphere interface in a water chestnut meadow (Trapa natans L.). Aquatic Botany 87: 43–48.CrossRefGoogle Scholar
  10. Carlson, R. E., 1977. Trophic state index for lakes. Limnology and Oceanography 22: 361–369.CrossRefGoogle Scholar
  11. Casper, P., S. C. Maberly, G. H. Hall & B. J. Finlay, 2000. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49: 1–19.CrossRefGoogle Scholar
  12. Chanton, P. J., G. J. Whiting, J. D. Happell & G. Gerard, 1993. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquatic Botany 46: 111–128.CrossRefGoogle Scholar
  13. Chen, Y.-H. & R. G. Prinn, 2006. Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model. Journal of Geophysical Research – Atmospheres 111: D10307.CrossRefGoogle Scholar
  14. CNA, 2011. Estadisticas del agua en Mexico, edicion 2011. SEMARNAT, Mexico.Google Scholar
  15. Conrad, R., M. Klose & M. Noll, 2009. Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Environmental Microbiology 11: 1844–1853.PubMedCrossRefGoogle Scholar
  16. Crill, P. M., K. B. Bartlett, J. O. Wilson, D. I. Sebacher, R. C. Harris, J. M. Melack, S. Macintyre, L. Lesack & L. Smithmorrill, 1988. Tropospheric methane from an Amazonian floodplane lake. Journal of Geophysical Research – Atmospheres 93: 1564–1570.CrossRefGoogle Scholar
  17. Dacey, J. W. H. & M. J. Klug, 1979. Methane efflux from lake sediments through water lilies. Science 203: 1253–1255.PubMedCrossRefGoogle Scholar
  18. DelSontro, T., D. F. Mcginnis, S. Sokek, I. Ostrovsky & B. Wehrli, 2010. Extreme methane emissions from a Swiss Hydropower Reservoir: contribution from bubbling sediments. Environmental Science & Technology 44: 2419–2425.CrossRefGoogle Scholar
  19. DelSontro, T., M. J. Kunz, T. Kempter, A. Wuest, B. Wehrli & D. B. Senn, 2011. Spatial heterogeneity of methane ebullition in a large tropical reservoir. Environmental Science & Technology 45: 9866–9873.CrossRefGoogle Scholar
  20. Demarty, M., J. Bastien, A. Tremblay, R. H. Hesslein & R. Gill, 2009. Greenhouse gas emissions from boreal reservoirs in Manitoba and Quebec, Canada, measured with automated systems. Environmental Science & Technology 43: 8908–8915.CrossRefGoogle Scholar
  21. Demarty, M., J. Bastien & A. Tremblay, 2011. Annual follow-up of gross diffusive carbon dioxide and methane emissions from a boreal reservoir and two nearby lakes in Quebec, Canada. Biogeosciences 8: 41–53.CrossRefGoogle Scholar
  22. dos Santos, M. A., L. P. Rosa, B. Sikar, E. Sikar & E. O. dos Santos, 2006. Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy 34: 481–488.CrossRefGoogle Scholar
  23. Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.CrossRefGoogle Scholar
  24. Duan, X., X. Wang, Y. Mu & Z. Ouyang, 2005. Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China. Atmospheric Environment 39: 4479–4487.CrossRefGoogle Scholar
  25. Duchemin, E., M. Lucotte & R. Canuel, 1999. Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies. Environmental Science & Technology 33: 350–357.CrossRefGoogle Scholar
  26. Fernandez, N. & F. Solano, 2005. Indices de Calidad y de Contaminacion del Agua. Centro Publicaciones Universidad de Pamplona, Colombia.Google Scholar
  27. Hutchinson, G. E., 1957. A Treatise on Limnology, Vol. 1. Geography, Physics and Chemistry. Wiley, New York.Google Scholar
  28. Huttunen, J. T., J. Alm, A. Liikanen, S. Juutinen, T. Larmola, T. Hammar, J. Silvola & P. J. Martikainen, 2003. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52: 609–621.PubMedCrossRefGoogle Scholar
  29. IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In Eggleston, H. S., L. Buendia, K. Miwa, T. Ngara & K. Tanabe (eds), Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan.Google Scholar
  30. IPCC, 2007. Climate Change 2007: the physical science basis. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  31. Juutinen, S., M. Rantakari, P. Kortelainen, J. T. Huttunen, T. Larmola, J. Alm, J. Silvola & P. J. Martikainen, 2009. Methane dynamics in different boreal lake types. Biogeosciences 6: 209–223.CrossRefGoogle Scholar
  32. Kemenes, A., B. R. Forsberg & J. M. Melack, 2007. Methane release below a tropical hydroelectric dam. Geophysical Research Letters 34: L12809.CrossRefGoogle Scholar
  33. Lampert, W. & U. Sommer, 1997. The Ecology of Lakes and Streams. Oxford University Press, New York.Google Scholar
  34. Lewis, J., 1996. Turbidity-controlled suspended sediment sampling for runoff-event load estimation. Water Resources Research 32: 2299–2310.CrossRefGoogle Scholar
  35. Marani, L. & P. C. Alvala, 2007. Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmospheric Environment 41: 1627–1633.CrossRefGoogle Scholar
  36. O’Connor, F. M., O. Boucher, N. Gedney, C. D. Jones, G. A. Folberth, R. Coppell, P. Friedlingstein, W. J. Collins, J. Chappellaz, J. Ridley & C. E. Johnson, 2010. Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Reviews of Geophysics 48: RG4005.Google Scholar
  37. Ojala, A., J. L. Bellido, T. Tulonen, P. Kankaala & J. Huotari, 2011. Carbon gas fluxes from a brown-water and a clear-water lake in the boreal zone during a summer with extreme rain events. Limnology and Oceanography 56: 61–76.CrossRefGoogle Scholar
  38. Ortiz-Llorente, M. J. & M. Alvarez-Cobelas, 2012. Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlands. Atmospheric Environment 59: 328–337.CrossRefGoogle Scholar
  39. Pavel, A., E. Durisch-Kaiser, S. Balan, S. Radan, S. Sobek & B. Wehrli, 2009. Sources and emission of greenhouse gases in Danube Delta lakes. Environmental Science and Pollution Research 16: 86–91.CrossRefGoogle Scholar
  40. R Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/.
  41. Rochette, P. & N. S. Eriksen-Hamel, 2008. Chamber measurements of soil nitrous oxide flux: are absolute values reliable? Soil Science Society of America Journal 72: 331–342.CrossRefGoogle Scholar
  42. Rolston, D. E., 1986. Gas Flux. In Klute, A. (ed.), Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. Soil Science Society of America, American Society of Agronomy, Madison, WI: 1103–1119.Google Scholar
  43. Schrier-Uijl, A. P., A. J. Veraart, P. A. Leffelaar, F. Berendse & E. M. Veenendaal, 2011. Release of CO(2) and CH(4) from lakes and drainage ditches in temperate wetlands. Biogeochemistry 102: 265–279.CrossRefGoogle Scholar
  44. Schubert, C. J., T. Diem & W. Eugster, 2012. Methane emissions from a small wind shielded lake determined by eddy covariance, flux chambers, anchored funnels and boundary model calculations: a comparison. Environmental Science & Technology 46: 4515–4522.CrossRefGoogle Scholar
  45. Schulz, S., H. Matsuyama & R. Conrad, 1997. Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). FEMS Microbiology Ecology 22: 207–213.CrossRefGoogle Scholar
  46. SEMARNAT, 2003. Informe de la situacion del medio ambiente en Mexico, 2002. Compendio de estadísticas ambientales, SEMARNAT, Mexico.Google Scholar
  47. SEMARNAT, 2005. Informe de la situacion del medio ambiente en Mexico, 2005. Compendio de estadísticas ambientales, SEMARNAT, Mexico.Google Scholar
  48. SEMARNAT-INECC, 2012. Inventario Nacional de Emisiones de Gases de Efecto Invernadero. In SEMARNAT-INECC (ed.), Quinta Comunicacion Nacional ante la Convencion Marco de las Naciones Unidas sobre el Cambio Climatico. SEMARNAT, Mexico: 189–246.Google Scholar
  49. Sobek, S., T. DelSontro, N. Wongfun & B. Wehrli, 2012. Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophysical Research Letters 39: L01401.CrossRefGoogle Scholar
  50. St Louis, V. L., C. A. Kelly, E. Duchemin, J. W. M. Rudd & D. M. Rosenberg, 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50: 766–775.CrossRefGoogle Scholar
  51. Striegl, R. G. & C. M. Michmerhuizen, 1998. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnology and Oceanography 43: 1519–1529.CrossRefGoogle Scholar
  52. Tranvik, L. J., J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L. B. Knoll, P. L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. M. Leech, S. L. McCallister, D. M. McKnight, J. M. Melack, E. Overholt, J. A. Porter, Y. Prairie, W. H. Renwick, F. Roland, B. S. Sherman, D. W. Schindler, S. Sobek, A. Tremblay, M. J. Vanni, A. M. Verschoor, E. von Wachenfeldt & G. A. Weyhenmeyer, 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314.CrossRefGoogle Scholar
  53. Verma, A., V. Subramanian & R. Ramesh, 2002. Methane emissions from a coastal lagoon: Vembanad Lake, West Coast, India. Chemosphere 47: 883–889.PubMedCrossRefGoogle Scholar
  54. Walter, K. M., L. C. Smith & F. S. Chapin III, 2007. Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences 365: 1657–1676.CrossRefGoogle Scholar
  55. Whitfield, C. J., J. Aherne & H. M. Baulch, 2011. Controls on greenhouse gas concentrations in polymictic headwater lakes in Ireland. Science of the Total Environment 410: 217–225.PubMedCrossRefGoogle Scholar
  56. Xing, Y. P., P. Xie, H. Yang, L. Y. Ni, Y. S. Wang & W. H. Tang, 2004. Diel variation of methane fluxes in summer in a eutrophic subtropical lake in China. Journal of Freshwater Ecology 19: 639–644.CrossRefGoogle Scholar
  57. Xing, Y. P., P. Xie, H. Yang, L. Y. Ni, Y. S. Wang & K. W. Rong, 2005. Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China. Atmospheric Environment 39: 5532–5540.CrossRefGoogle Scholar
  58. Yvon-Durocher, G., J. M. Montoya, G. Woodward, J. I. Jones & M. Trimmer, 2011. Warming increases the proportion of primary production emitted as methane from freshwater mesocosms. Global Change Biology 17: 1225–1234.CrossRefGoogle Scholar
  59. Zheng, H., X. Zhao, T. Zhao, F. Chen, W. Xu, X. Duan, X. Wang & Z. Ouyang, 2011. Spatial-temporal variations of methane emissions from the Ertan hydroelectric reservoir in southwest China. Hydrological Processes 25: 1391–1396.CrossRefGoogle Scholar
  60. Zhu, R., Y. Liu, H. Xu, T. Huang, J. Sun, E. Ma & L. Sun, 2010. Carbon dioxide and methane fluxes in the littoral zones of two lakes, east Antarctica. Atmospheric Environment 44: 304–311.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rodrigo Gonzalez-Valencia
    • 1
  • Armando Sepulveda-Jauregui
    • 1
  • Karla Martinez-Cruz
    • 1
  • Jorge Hoyos-Santillan
    • 1
  • Luc Dendooven
    • 2
  • Frederic Thalasso
    • 1
  1. 1.Departamento de Biotecnología y BioingenieríaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN)MexicoMexico
  2. 2.Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), ABACUSMexicoMexico

Personalised recommendations