Advertisement

Hydrobiologia

, Volume 720, Issue 1, pp 1–18 | Cite as

Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves

  • Severino G. SalmoIII
  • Catherine Lovelock
  • Norman C. Duke
Primary Research Paper

Abstract

We investigated the restoration trajectories in vegetation and soil parameters of monospecific Rhizophora mucronata stands planted 6, 8, 10, 11, 12, 17, 18, and 50 years ago (restored system). We tested the hypothesis that the changes in vegetation characteristics, with progressing mangrove age, are related to the changes in soil characteristics. The vegetation and soil parameters were compared across this restoration sequence using a reference system comprising mature, natural mangrove stands of unknown age. Rapid increases in leaf area index and aboveground biomass, and declines in tree density and size (in terms of tree diameter and height) occurred with increasing stand age. Soil organic matter, total nitrogen, and soil redox potential increased, and soil temperature decreased as stands aged. These patterns tended to stabilize at approximately the 11th year, indicating the probable age that restoration plots tend toward forest maturity. The time for the restored systems to reach forest maturity, attaining characteristics similar to the reference system, is estimated at 25 years, which is relatively slow compared to forest regeneration trajectories estimated for natural mangroves. Our study describes the trajectory patterns for planted mangroves, which are important for the assessment of both the progress and success of mangrove rehabilitation programs.

Keywords

Mangroves Restoration Soil carbon Rhizophora Space-for-time substitution Philippines 

Notes

Acknowledgments

We are grateful to Ford Foundation-International Fellowship Program (FORD-IFP) and International Foundation for Science (IFS; D/4667-1) for providing financial assistance throughout the study period; the University of Queensland Research Scholarship Grant for providing financial support to SS; the Local Government Units and mangrove managers; and Jack Rengel and Tommy Conzaga for assisting in the field sampling.

Supplementary material

10750_2013_1617_MOESM1_ESM.docx (29 kb)
Supplementary material (DOCX 29 kb)

References

  1. Aksornkoae, S., 1996. Reforestation of mangrove forests in Thailand. In Field, C. D. (ed.), Restoration of Mangrove Ecosystems. International Society for Mangrove Ecosystems, Okinawa: 52–63.Google Scholar
  2. Alongi, D. M., 2009. The Energetics of Mangrove Forests. Springer, Townsville: 216 pp.Google Scholar
  3. Analuddin, K., R. Suwa & K. Hagihara, 2009. The self-thinning process in mangrove Kandelia obovata stands. Journal of Plant Research 122: 53–59.PubMedCrossRefGoogle Scholar
  4. Araujo, R. J., J. C. Jaramillo & S. C. Snedaker, 1997. LAI and leaf size differences in two red mangrove forest types in South Florida. Bulletin of Marine Science 60(3): 643–647.Google Scholar
  5. Baldwin, A., M. Egnotovich & W. Platt, 2001. Regeneration in fringe mangrove forests damaged by Hurricane Andrew. Plant Ecology 157: 149–162.CrossRefGoogle Scholar
  6. Barbier, E. B., 2006. Natural barriers to natural disasters: replanting mangroves after the tsunami. Frontiers in Ecology and the Environment 4(3): 124–131.CrossRefGoogle Scholar
  7. Bosire, J. O., F. Dahdouh-Guebas, J. G. Kairo & N. Koedam, 2003. Colonization of non-planted mangrove species into restored mangrove stands in Gazi Bay, Kenya. Aquatic Botany 76: 267–279.CrossRefGoogle Scholar
  8. Bosire, J. O., F. Dahdouh-Guebas, J. G. Kairo, J. M. Kazungu, F. Dehairs & N. Koedam, 2005. Litter degradation and CN dynamics in reforested mangrove plantations at Gazi Bay, Kenya. Biological Conservation 126: 287–295.CrossRefGoogle Scholar
  9. Bosire, J. O., F. Dahdouh-Guebas, M. Walton, B. I. Crona, R. R. Lewis III, C. Field & N. Koedam, 2008. Functionality of restored mangroves – a review. Aquatic Botany 89: 251–259.CrossRefGoogle Scholar
  10. Boto, K. G., 1984. Waterlogged saline soils. In Snedaker, S. C. & J. C. Snedaker (eds), The Mangrove Ecosystem: Research Methods. UNESCO, Paris: 114–130.Google Scholar
  11. Boto, K. G. & J. T. Wellington, 1984. Soil characteristics and nutrient status in a northern Australian mangrove forest. Estuaries 7: 61–69.CrossRefGoogle Scholar
  12. Bouillon, S., 2011. Carbon cycle: storage beneath mangroves. Nature Geoscience 4: 282–283.CrossRefGoogle Scholar
  13. Bray, R. H. & L. T. Kurtz, 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59: 39–45.CrossRefGoogle Scholar
  14. Cardona, P. & L. Botero, 1998. Soil characteristics and vegetation structure in a heavily deteriorated mangrove forest in the Caribbean coast of Colombia. Biotropica 30(1): 24–34.CrossRefGoogle Scholar
  15. Chan, H. T., 1996. Mangrove reforestation in Peninsular Malaysia: a case study of Matang. In Field, C. D. (ed.), Restoration of Mangrove Ecosystems. International Society of Mangrove Ecosystems, Okinawa: 64–75.Google Scholar
  16. Chapman, M. G. & T. J. Tolhurst, 2007. Relationships between benthic macrofauna and biogeochemical properties of sediments at different spatial scales and among different habitats in mangrove forests. Journal of Experimental Marine Biology and Ecology 343: 96–109.CrossRefGoogle Scholar
  17. Chazdon, R. L., 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology Evolution and Systematics 6/1(2): 51–71.CrossRefGoogle Scholar
  18. Chen, R. & R. R. Twilley, 1998. A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources. The Journal of Ecology 86(1): 37–51.CrossRefGoogle Scholar
  19. Chen, R. & R. R. Twilley, 1999. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22(4): 955–970.Google Scholar
  20. Clarke, P. J., 1995. The population dynamics of the mangrove Avicennia marina: demographic synthesis and predictive modelling. Hydrobiologia 295: 83–88.CrossRefGoogle Scholar
  21. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.Google Scholar
  22. Clough, B. F., 1998. Mangrove forest productivity and biomass accumulation in Hinchinbrook Channel, Australia. Mangroves and Salt Marshes 2: 191–198.CrossRefGoogle Scholar
  23. Clough, B. F., J. E. Ong & W. K. Gong, 1997. Estimating leaf area index and photosynthetic production in canopies of the mangrove Rhizophora apiculata. Marine Ecology Progress Series 159: 285–292.CrossRefGoogle Scholar
  24. Clough, B., D. T. Tan, D. X. Phuong & D. C. Buu, 2000. Canopy leaf area index and litter fall in stands of the mangrove Rhizophora apiculata of different age in the Mekong Delta, Vietnam. Aquatic Botany 66: 311–320.CrossRefGoogle Scholar
  25. Cohen, M. C. L., R. J. Lara, J. F. D. Ramos & T. Dittmar, 1999. Factors influencing the variability of Mg, Ca and K in waters of a mangrove creek in Braganca, North Brazil. Mangroves and Salt Marshes 3: 9–15.CrossRefGoogle Scholar
  26. Colonello, G. & E. Medina, 1998. Vegetation changes induced by dam construction in a tropical estuary: the case of the Manamo river, Orinoco Delta (Venezuela). Plant Ecology 139: 145–154.CrossRefGoogle Scholar
  27. Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199(4335): 1302–1310.PubMedCrossRefGoogle Scholar
  28. Crona, B. I. & P. Ronnback, 2005. Use of replanted mangroves as nursery grounds by shrimp communities in Gazi Bay, Kenya. Estuarine, Coastal and Shelf Science 65(3): 535–544.CrossRefGoogle Scholar
  29. De Boer, T. A., 1983. Vegetation as an indicator of environmental changes. Environmental Monitoring and Assessment 3: 375–380.CrossRefGoogle Scholar
  30. Donato, D. C., J. B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham & M. Kanninen, 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4: 293–297.CrossRefGoogle Scholar
  31. Duarte, C. M., O. Geertz-Hansen, U. Thampanya, J. Terrados, M. D. Fortes, L. Kamp-Nielsen, J. Borum & S. Boromthanarath, 1998. Relationship between sediment conditions and mangrove Rhizophora apiculata seedling growth and nutrient status. Marine Ecology Progress Series 175: 277–283.CrossRefGoogle Scholar
  32. Duke, N. C., 2001. Gap creation and regenerative processes driving diversity and structure of mangrove ecosystems. Wetlands Ecology and Management 9: 257–269.CrossRefGoogle Scholar
  33. Ellison, A. M., 2000. Mangrove restoration: do we know enough? Restoration Ecology 8(3): 219–229.CrossRefGoogle Scholar
  34. Evans, J., 1999. Planted forests of the wet and dry tropics: their variety, nature, and significance. In Boyle, J. R., J. K. Winjum, K. Kavanagh & E. C. Jensen (eds), Planted Forests: Contributions to the Quest for Sustainable Societies. Kluwer, Dordrecht: 25–36.CrossRefGoogle Scholar
  35. Feller, I. C., 1995. Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecological Monographs 65(4): 477–505.CrossRefGoogle Scholar
  36. Field, C. D., 1999. Mangrove rehabilitation: choice and necessity. Hydrobiologia 413: 47–52.CrossRefGoogle Scholar
  37. Fromard, F., H. Puig, E. Mougin, G. Marty, J. L. Bertoulle & L. Cadamuro, 1998. Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia 115: 39–53.CrossRefGoogle Scholar
  38. Green, R. H., 1979. Sampling Design and Statistical Methods for Environmental Biologists. Wiley, New York: 257.Google Scholar
  39. Green, E. P., P. J. Mumby, A. J. Edwards, C. D. Clark & A. C. Ellis, 1997. Estimating leaf area index of mangroves from satellite data. Aquatic Botany 58(1): 11–19.CrossRefGoogle Scholar
  40. Guariguata, M. R. & R. Ostertag, 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148: 185–206.CrossRefGoogle Scholar
  41. Hong, P. N., 1996. Restoration of mangrove ecosystems in Vietnam: a case study of Can Gio District, Ho Chi Minh City. In Field, C. D. (ed.), Restoration of Mangrove Ecosystems. International Society of Mangrove Ecosystems, Okinawa: 76–96.Google Scholar
  42. Hooper, D. U. & P. M. Vitousek, 1997. The effects of plant competition and diversity on ecosystem processes. Science 277: 1302–1305.CrossRefGoogle Scholar
  43. Imai, N., M. Takyu, Y. Nakamura & T. Nakamura, 2006. Gap formation and regeneration of tropical mangrove forests in Ranong, Thailand. Plant Ecology 186: 37–46.CrossRefGoogle Scholar
  44. Ishii, T. & Y. Tateda, 2004. Leaf area index and biomass estimation for mangrove plantation in Thailand. Geoscience and Remote Sensing Symposium. IGARRS’04 Proceedings: 2323–2326.Google Scholar
  45. Jimenez, J. A., A. E. Lugo & G. Cintron, 1985. Tree mortality in mangrove forests. Biotropica 17(3): 177–185.CrossRefGoogle Scholar
  46. Kaly, U. L. & G. P. Jones, 1998. Mangrove restoration: a potential tool for coastal management in tropical developing countries. Ambio 27(8): 656–661.Google Scholar
  47. Kathiresan, K. & B. L. Bingham, 2001. Biology of mangroves and mangrove ecosystems. Advances in Marine Biology 40: 81–251.CrossRefGoogle Scholar
  48. Katon, B. M., R. S. Pomeroy, L. R. Garces & M. W. Ring, 2000. Rehabilitating the mangrove resources of Cogtong Bay, Philippines: a co-management perspective. Coastal Management 28(1): 29–37.CrossRefGoogle Scholar
  49. Kellner, J. R., G. P. Asner, P. M. Vitousek, M. A. Tweiten, S. Hotchkiss & O. A. Chadwick, 2011. Dependence of forest structure and dynamics on substrate age and ecosystem development. Ecosystems 14: 1156–1167.CrossRefGoogle Scholar
  50. Komiyama, A., K. Ogino, S. Aksornkoae & S. Sabhasri, 1987. Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology 3: 97–108.CrossRefGoogle Scholar
  51. Komiyama, A., H. Moriya, S. Prawiroatmodjo, T. Toma & K. Ogino, 1988. Forest primary productivity. In Ogino, K. & M. Chihara (eds), Biological System of Mangrove. Ehime University, Matsuyama: 97–117.Google Scholar
  52. Komiyama, A., J. E. Ong & S. Poungparn, 2008. Allometry, biomass and productivity of mangrove forests: a review. Aquatic Botany 89: 128–137.CrossRefGoogle Scholar
  53. Lewis III, R. R., 2005. Ecological engineering for successful management and restoration of mangrove forests. Ecological Engineering 24(4): 403–418.Google Scholar
  54. Lovelock, C. E., B. K. Sorrell, N. Hancock, Q. Hua & A. Swales, 2010. Mangrove forest and soil development on a rapidly accreting shore in New Zealand. Ecosystems 13(3): 437–451.CrossRefGoogle Scholar
  55. Masera, O. R., J. F. Garza-Caligaris, M. Kanninen, T. Karjalainen, J. Liski, G. J. Nabuurs, A. Pussinen, B. H. J. de Jong & G. M. J. Mohren, 2003. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V. 2 approach. Ecological Modelling 164: 177–199.CrossRefGoogle Scholar
  56. McKee, K. L., 1993. Soil physicochemical patterns and mangrove species distribution – reciprocal effects? The Journal of Ecology 81(3): 477–487.CrossRefGoogle Scholar
  57. McKee, K. L., 1995. Interspecific variation in growth, biomass partitioning, and defensive characteristics of neotropical mangrove seedlings: response to light and nutrient availability. American Journal of Botany 82(3): 299–307.CrossRefGoogle Scholar
  58. McKee, K. L., 2010. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91(4): 475–483.CrossRefGoogle Scholar
  59. McKee, K. L., 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91: 475–483.CrossRefGoogle Scholar
  60. McKee, K. L. & P. L. Faulkner, 2000. Biogeochemical functioning of restored and natural mangrove forests in Southwest Florida, USA. Restoration Ecology 8: 247–259.CrossRefGoogle Scholar
  61. Mcleod, E., G. L. Chmura, S. Bouillon, R. Salm, M. Bjork, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger & B. R. Silliman, 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9(10): 552–560.CrossRefGoogle Scholar
  62. Michener, W. K., 1997. Quantitatively evaluating restoration experiments: research design, statistical analysis, and data management considerations. Restoration Ecology 5(4): 324–337.CrossRefGoogle Scholar
  63. Milbrandt, E. C., J. M. Greenawalt-Boswell, P. D. Sokoloff & S. A. Bortone, 2006. Impact and response of Southwest Florida mangroves to the 2004 hurricane season. Estuaries and Coasts 29(6): 979–984.Google Scholar
  64. Morgan, P. A. & F. T. Short, 2002. Using functional trajectories to track constructed salt marsh development in the Great Bay Estuary, Maine/New Hampshire, USA. Restoration Ecology 10: 461–473.CrossRefGoogle Scholar
  65. Morrisey, D. J., G. A. Skilleter, J. I. Ellis, B. R. Burns, C. E. Kemp & K. Burta, 2003. Differences in benthic fauna and sediment among mangrove (Avicennia marina var. australasica) stands of different ages in New Zealand. Estuarine, Coastal and Shelf Science 56: 581–592.CrossRefGoogle Scholar
  66. Nagelkerken, I., S. J. M. Blaber, S. Bouillon, P. Green, M. Haywood, L. G. Kirton, J.-O. Meynecke, J. Pawlik, H. M. Penrose, A. Sasekumar & P. J. Somerfield, 2008. The habitat function of mangroves for terrestrial and marine fauna: a review. Aquatic Botany 89: 155–185.CrossRefGoogle Scholar
  67. Nelson, D. W. & L. E. Sommers, 1972. A simple digestion procedure for estimation of total nitrogen in soils and sediments. Journal of Environmental Quality 1(4): 423–425.CrossRefGoogle Scholar
  68. Nichols, O. G. & F. M. Nichols, 2003. Long-term trends in faunal recolonization after bauxite mining in the jarrah forest of south-western Australia. Restoration Ecology 11: 261–272.CrossRefGoogle Scholar
  69. Niklas, K. J., J. J. Midgley & R. H. Rand, 2003. Tree size frequency distributions, plant density, age and community disturbance. Ecology Letters 6: 405–411.CrossRefGoogle Scholar
  70. Oliver, C. D. & B. C. Larson, 1996. Forest Stand Dynamics. Wiley Inc., New York: 520 pp.Google Scholar
  71. Ong, J. E., G. W. Khoon & C. H. Wong, 1982. Productivity and nutrient status of litter in a managed mangrove forest in Malaysia. In: Kostermans, A. Y. & S. S. Sastroutomo (eds), Proceedings of the Symposium on Mangrove Forest Ecosystem Productivity in Southeast Asia. BIOTROP Special Publication No. 17, Bogor, Indonesia.Google Scholar
  72. Ong, J. E., W. K. Gong & C. H. Wong, 2004. Allometry and partitioning of the mangrove, Rhizophora apiculata. Forest Ecology and Management 188: 395–408.CrossRefGoogle Scholar
  73. Osland, J. M., A. C. Spivak, J. A. Nestlerode, J. M. Lessmann, A. E. Almario, P. T. Heitmuller, M. J. Russell, K. W. Krauss, F. Alvarez, D. D. Dantin, J. E. Harvey, A. S. From, N. Cormier & C. L. Stagg, 2012. Ecosystem development after mangrove wetland creation: plant–soil change across a 20-year chronosequence. Ecosystems 15: 848–866.CrossRefGoogle Scholar
  74. Pernetta, J. C., 1993. Mangrove Forests, Climate Change and Sea Level Rise: Hydrological Influences on Community Structure and Survival, with Examples from the Indo-West Pacific. A Marine Conservation and Development Report. IUCN, Gland, Switzerland.Google Scholar
  75. Pickett, S. T. A., 1989. Space-for-time substitution as an alternative to long-term studies. In Likens, G. E. (ed.), Long-Term Studies in Ecology: Approaches and Alternatives. Springer, New York: 110–135.CrossRefGoogle Scholar
  76. Primavera, J. H. & J. M. A. Esteban, 2008. A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects. Wetlands Ecology and Management 16(5): 345–358.CrossRefGoogle Scholar
  77. Putz, F. E. & H. T. Chan, 1986. Tree growth, dynamics and productivity in a mature mangrove forests in Malaysia. Forest Ecology and Management 17: 211–230.CrossRefGoogle Scholar
  78. R Development Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/. Accessed 30 September 2012.
  79. Ramsey, E. W. & J. R. Jensen, 1996. Remote sensing of mangrove wetlands: relating penetration theory and a test case. Journal of Applied Ecology 12: 839–878.Google Scholar
  80. Ren, H., S. Jian, H. Lu, Q. Zhang, W. Shen, W. Han, Z. Yin & Q. Guo, 2008. Restoration of mangrove plantations and colonization by native species in Leizhou Bay. South China. Ecological Research 23(2): 401–407.CrossRefGoogle Scholar
  81. Rivera-Monroy, V. H., R. R. Twilley, E. Medina, E. B. Moser, L. Botero, A. M. Francisco & E. Bullard, 2004. Spatial variability of soil nutrients in disturbed riverine mangrove forests at different stages of regeneration in the San Juan River Estuary, Venezuela. Estuaries 27(1): 44–57.CrossRefGoogle Scholar
  82. Ruiz-Jaen, M. C. & T. M. Aide, 2005. Restoration success: how is it being measured? Restoration Ecology 13(3): 569–577.CrossRefGoogle Scholar
  83. Saenger, P., 2002. Mangrove Ecology, Silviculture and Conservation. Kluwer, Dordrecht: 360.CrossRefGoogle Scholar
  84. Salmo III, S. G. & N. C. Duke, 2010. Establishing mollusk colonization and assemblage patterns in planted mangrove stands of different ages in Lingayen Gulf, Philippines. Wetlands Ecology and Management 18(6): 745–754.CrossRefGoogle Scholar
  85. Salmo III, S. G., R. Carranza, M. A. J. Meñez & N. G. Estepa, 1999. Mangrove reforestation program in Bolinao, Pangasinan: partnerships among local and government institutions. Community-Based Strategies in Natural Resources Management. Voluntary Service Overseas, Philippines: 146–151.Google Scholar
  86. Salmo III, S. G., D. D. Torio & J. M. A. Esteban, 2007. Evaluation of rehabilitation strategies and management schemes for the improvement of mangrove management programs in Lingayen Gulf. Science Diliman 19(1): 24–34.Google Scholar
  87. Samson, M. S. & R. N. Rollon, 2008. Growth performance of planted mangroves in the Philippines: revisiting forest management strategies. Ambio 37(4): 234–240.PubMedCrossRefGoogle Scholar
  88. Sherman, R. E., T. J. Fahey & R. W. Howarth, 1998. Soil-plant interactions in a neotropical mangrove forest: iron, phosphorus and sulfur dynamics. Oecologia 115(4): 553–563.CrossRefGoogle Scholar
  89. Society for Ecological Restoration International Science and Policy Working Group (SER), 2004. The SER International Primer on Ecological Restoration. Society for Ecological Restoration International, Tuczon. http://www.ser.org. Accessed 30 October 2012.
  90. Sukardjo, S. & I. Yamada, 1992. Biomass and productivity of a Rhizophora mucronata Lamarck plantation in Tritih, Central Java, Indonesia. Forest Ecology and Management 49: 195–209.CrossRefGoogle Scholar
  91. Tabuchi, R., 2004. The rehabilitation of mangroves in Southeast Asia. In Saxena, K. G., L. Liang, Y. Kono & S. Miyata (eds), Small-Scale Livelihoods and Natural Resources Management in Marginal Areas: Case Studies in Monsoon Asia. Proceedings of an International Symposium, Tokyo, Japan: 121–128.Google Scholar
  92. Tamai, S. & P. Iampa, 1988. Establishment and growth of mangrove seedlings in mangrove forests of Southern Thailand. Ecological Research 3: 227–238.CrossRefGoogle Scholar
  93. Thom, B. G., 1987. Mangrove environments. In Field, C. D. & A. J. Dartnall (eds), Mangrove Ecosystems of Asia and the Pacific: Status, Exploitation and Management. Proceedings of the Research for Development Seminar held at the Australian Institute of Marine Science, Townsville, Australia: 286–291.Google Scholar
  94. Tolhurst, T. J. & M. G. Chapman, 2007. Patterns in biogeochemical properties of sediments and benthic animals among different habitats in mangrove forests. Austral Ecology 32: 775–788.CrossRefGoogle Scholar
  95. Twilley, R. R., V. H. Rivera-Monroy, R. Chen & L. Botero, 1998. Adapting an ecological mangrove model to simulate trajectories in restoration ecology. Marine Pollution Bulletin 37(8–12): 404–419.Google Scholar
  96. Ukpong, I. E., 1994. Soil–vegetation interrelationships of mangrove swamps as revealed by multivariate analyses. Geoderma 64: 167–181.CrossRefGoogle Scholar
  97. Vitousek, P. M. & W. A. Reiners, 1975. Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25(6): 376–381.CrossRefGoogle Scholar
  98. Walkley, A. & I. A. Black, 1934. An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Science 63: 251–263.CrossRefGoogle Scholar
  99. Walters, B. B., 2004. Local management of mangrove forests in the Philippines: successful conservation or efficient resource exploitation? Human Ecology 32(2): 177–195.CrossRefGoogle Scholar
  100. Walters, B. B., 2005. Ecological effects of small-scale cutting of Philippine mangrove forests. Forest Ecology and Management 206: 331–348.CrossRefGoogle Scholar
  101. Weilhoefer, C. L., 2010. A review of indicators of estuarine tidal wetland condition. Ecological Indicators 11(2): 514–525.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Severino G. SalmoIII
    • 1
    • 2
    • 3
  • Catherine Lovelock
    • 2
  • Norman C. Duke
    • 4
  1. 1.Department of Environmental ScienceAteneo de Manila UniversityQuezon CityPhilippines
  2. 2.School of Biological SciencesThe University of QueenslandSt LuciaAustralia
  3. 3.College of AgricultureCentral Luzon State UniversityScience City of MuñozPhilippines
  4. 4.Centre for Tropical Water and Aquatic Ecosystem ResearchJames Cook UniversityTownsvilleAustralia

Personalised recommendations