Hydrobiologia

, Volume 718, Issue 1, pp 159–172

Variability of water temperature may influence food-chain length in temperate streams

  • Nicolas Hette-Tronquart
  • Jean-Marc Roussel
  • Bernard Dumont
  • Virginie Archaimbault
  • Didier Pont
  • Thierry Oberdorff
  • Jérôme Belliard
Primary Research Paper

Abstract

Food-chain length (FCL) is commonly used in ecological investigations to gain insight into how ecosystems function. Several studies have investigated the mechanisms underlying FCL patterns, but none has specifically examined the effect of temperature variability. In river ecosystems, water temperature variability can modify community structure, individuals’ activity, and individuals’ physiological rates, among other things. As such, we expected that it would negatively influence FCL. To test this prediction, we took advantage of a dataset comprising five streams, which mainly differ according to their temperature variability. At each stream, we (i) studied the species composition of macroinvertebrates and fish, and using nitrogen and carbon stable isotopes, (ii) estimated realized FCL, and (iii) examined food web structure. For macroinvertebrates, but not for fish, species composition differed among sites displaying low and high temperature variability. FCL was negatively influenced by temperature variability. Confirming this trend, we found a highly significant linear relationship between FCL and temperature variability using data from the literature. As for food web structure, the trophic position of filter-feeders/shredders may explain the FCL differences among sites. Our study gives additional support to the “dynamic stability” hypothesis and advances a step further by suggesting that temperature variability alone may reduce FCL.

Keywords

Stable isotopes Trophic position Food web Macroinvertebrates Salmo trutta Cottus gobio 

Supplementary material

10750_2013_1613_MOESM1_ESM.pdf (50 kb)
Supplementary material 1 (PDF 51 kb)

References

  1. Abdoli, A., D. Pont & P. Sagnes, 2005. Influence of female age, body size and environmental conditions on annual egg production of the bullhead. Journal of Fish Biology 67: 1327–1341.CrossRefGoogle Scholar
  2. Abdoli, A., D. Pont & P. Sagnes, 2007. Intrabasin variations in age and growth of bullhead: the effects of temperature. Journal of Fish Biology 70: 1224–1238.CrossRefGoogle Scholar
  3. Anderson, C. & G. Cabana, 2007. Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. Journal of the North American Benthological Society 26: 273–285.CrossRefGoogle Scholar
  4. Borderelle, A. L., D. Gerdeaux, P. Giraudoux & V. Verneaux, 2009. Influence of watershed′s anthropogenic activities on fish nitrogen and carbon stable isotope ratios in nine French lakes. Knowledge and Management of Aquatic Ecosystems 392: 1–13.Google Scholar
  5. Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences of the United States of America 93: 10844–10847.PubMedCrossRefGoogle Scholar
  6. Carpenter, S. R. & J. F. Kitchell, 1993. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  7. De Angelis, D. L., S. M. Bartell & A. L. Brenkert, 1989. Effects of Nutrient Recycling and Food-Chain Length on Resilience. The American Naturalist 134: 778–805.CrossRefGoogle Scholar
  8. Death, R. G., 2008. The effect of flood on aquatic invertebrate communities. In Lancaster, J. & R. A. Briers (eds), Aquatic Insects: Challenges to Populations. CABI, Oxford: 103–121.CrossRefGoogle Scholar
  9. Duffy, J. E., J. P. Richardson & K. E. France, 2005. Ecosystem consequences of diversity depend on food chain length in estuarine vegetation. Ecology Letters 8: 301–309.CrossRefGoogle Scholar
  10. Finlay, J., 2004. Patterns and controls of lotic algal stable carbon isotope ratios. Limnology and Oceanography 49: 850–861.CrossRefGoogle Scholar
  11. Finlay, J. & C. Kendall, 2007. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In Michener, R. & K. Lajtha (eds), Stable Isotopes in Ecology and Environmental Science. Blackwell Publishing, Oxford: 283–333.CrossRefGoogle Scholar
  12. Fischer, S. & H. Kummer, 2000. Effects of residual flow and habitat fragmentation on distribution and movement of bullhead (Cottus gobio L.) in an alpine stream. Hydrobiologia 422–423: 305–317.CrossRefGoogle Scholar
  13. Garrott, R. A., L. L. Eberhardt, J. K. Otton, P. J. White & M. A. Chaffee, 2002. A geochemical trophic cascade in Yellowstone’s geothermal environments. Ecosystems 5: 659–666.CrossRefGoogle Scholar
  14. Hairston Jr., N. G. & N. G. Hairston Sr., 1993. Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. The American Naturalist 142: 379–411.CrossRefGoogle Scholar
  15. Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control, and competition. The American Naturalist 94: 421–425.CrossRefGoogle Scholar
  16. Jardine, T. D., M. Gray, S. MacWilliam & R. Cunjak, 2005. Stable isotope variability in tissues of temperate stream fishes. Transactions of the American Fisheries Society 134: 1103–1110.CrossRefGoogle Scholar
  17. Jenkins, G., G. Woodward & A. Hildrew, 2013. Long-term amelioration of acidity accelerates decomposition in headwater streams. Global Change Biology 19: 4, 1100–1106.Google Scholar
  18. Kondolf, G. M., D. R. Montgomery, H. Piégay & L. Schmitt, 2005. Geomorphic classification of rivers and streams. In Kondolf, G. M. & H. Piégay (eds), Tools in Fluvial Geomorphology. Wiley, Chichester: 171–204.CrossRefGoogle Scholar
  19. Layman, C. A., D. A. Arrington, C. G. Montaña & D. M. Post, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88: 42–48.PubMedCrossRefGoogle Scholar
  20. Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–417.CrossRefGoogle Scholar
  21. McHugh, P. A., A. R. McIntosh & P. G. Jellyman, 2010. Dual influences of ecosystem size and disturbance on food chain length in streams. Ecology Letters 13: 881–890.PubMedCrossRefGoogle Scholar
  22. Pauly, D., V. Christensen, J. Dalsgaard, R. Froese & F. Torres, 1998. Fishing down marine food webs. Science 279: 860–863.PubMedCrossRefGoogle Scholar
  23. Persat, H. & G. H. Copp, 1990. Electric fishing and point abundance sampling for the ichthyology of large rivers. In Cowx, I. G. (ed.), Developments in Electric Fishing. Kluwer, Amsterdam: 197–209.Google Scholar
  24. Pimm, S. L. & J. H. Lawton, 1977. Number of trophic levels in ecological communities. Nature 268: 329–331.CrossRefGoogle Scholar
  25. Post, D. M., 2002a. The long and short of food-chain length. Trends in Ecology and Evolution 17: 269–277.CrossRefGoogle Scholar
  26. Post, D. M., 2002b. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.CrossRefGoogle Scholar
  27. Post, D. M., 2007. Testing the productive-space hypothesis: rational and power. Oecologia 153: 973–984.PubMedCrossRefGoogle Scholar
  28. Post, D. M. & G. Takimoto, 2007. Proximate structural mechanisms for variation in food-chain length. Oikos 116: 775–782.CrossRefGoogle Scholar
  29. Post, D. M., M. L. Pace & N. G. Hairston, 2000. Ecosystem size determines food-chain length in lakes. Nature 405: 1047–1049.PubMedCrossRefGoogle Scholar
  30. Power, M., K. R. R. A. Guiguer & D. R. Barton, 2003. Effects of temperature on isotopic enrichment in Daphnia magna: implications for aquatic food-web studies. Rapid Communications in Mass Spectrometry 17: 1619–1625.PubMedCrossRefGoogle Scholar
  31. Reyjol, Y., J. P. Léna, F. Hervant & D. Pont, 2009. Effects of temperature on biological and biochemical indicators of the life-history strategy of bullhead Cottus gobio. Journal of Fish Biology 75: 1427–1445.PubMedCrossRefGoogle Scholar
  32. Rutherford, J., S. Blackett, C. Blackett, L. Saito & R. Davies-Colley, 1997. Predicting the effects of shade on water temperature in small streams. New Zealand Journal of Marine and Freshwater Research 31: 707–721.CrossRefGoogle Scholar
  33. Sabo, J. L. & D. M. Post, 2008. Quantifying periodic, stochastic, and catastrophic environmental variation. Ecological Monographs 78: 19–40.CrossRefGoogle Scholar
  34. Sabo, J. L., J. C. Finlay & D. M. Post, 2009. Food chains in freshwaters. Annals of the New York Academy of Sciences 1162: 187–220.PubMedCrossRefGoogle Scholar
  35. Sabo, J. L., J. C. Finlay, T. Kennedy & D. M. Post, 2010. The role of discharge variation in scaling of drainage area and food chain length in rivers. Science 330: 965–967.Google Scholar
  36. Smyntek, P., S. Maberly & J. Grey, 2012. Dissolved carbon dioxide concentration controls baseline stable carbon isotope signatures of a lake food web. Limnology and Oceanography 57: 1292–1302.CrossRefGoogle Scholar
  37. Sterner, R., A. Bajpai & T. Adams, 1997. The enigma of food chain length: absence of theoretical evidence for dynamic constraints. Ecology 78: 2258–2262.CrossRefGoogle Scholar
  38. Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2010. Invertébrés d’eau douce: Systématique, biologie, écologie, 2nd ed. CNRS Editions, Paris.Google Scholar
  39. Takimoto, G. & D. M. Post, 2012. Environmental determinants of food-chain length: a meta-analysis. Ecological Research. doi:10.1007/s11284-012-0943-7.
  40. Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.CrossRefGoogle Scholar
  41. Townsend, C. R., R. M. Thompson, A. R. McIntosh, C. Kilroy, E. Edwards & M. R. Scarsbrook, 1998. Disturbance, resource supply, and food-web architecture in streams. Ecology Letters 1: 200–209.CrossRefGoogle Scholar
  42. Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biomonitoring through biological traits of benthic macroinvertebrates: how to use species trait databases? Hydrobiologia 422–423: 153–162.CrossRefGoogle Scholar
  43. Vander Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80: 1395–1404.CrossRefGoogle Scholar
  44. Vander Zanden, M. J. & J. B. Rasmussen, 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.CrossRefGoogle Scholar
  45. Vanderklift, M. A. & S. Ponsard, 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136: 169–182.PubMedCrossRefGoogle Scholar
  46. Wallace, R. K., 1981. An assessment of diet-overlap indexes. Transactions of the American Fisheries Society 110: 72–76.CrossRefGoogle Scholar
  47. Walters, A. W. & D. M. Post, 2008. An experimental disturbance alters fish size structure but not food chain length in streams. Ecology 89: 3261–3267.PubMedCrossRefGoogle Scholar
  48. Werner, R. A. & W. A. Brand, 2001. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry 15: 501–519.PubMedCrossRefGoogle Scholar
  49. Whittaker, R. H. & C. W. Fairbanks, 1958. A study of plankton copepod communities in the Columbia Basin, Southeastern Washington. Ecology 39: 46–65.CrossRefGoogle Scholar
  50. Woodland, R., M. Rodríguez, P. Magnan, H. Glémet & G. Cabana, 2012. Incorporating temporally dynamic baselines in isotopic mixing models. Ecology 93: 131–144.PubMedCrossRefGoogle Scholar
  51. Woodward, G., J. P. Benstead, O. S. Beveridge, J. Blanchard, T. Brey, L. E. Brown, W. F. Cross, N. Friberg, T. C. Ings, U. Jacob, S. Jennings, M. E. Ledger, A. M. Milner, J. M. Montoya, E. O’Gorman, J. M. Olesen, O. L. Petchey, D. E. Pichler, D. C. Reuman, M. S. A. Thompson, F. J. F. Van Veen & G. Yvon-Durocher, 2010a. Ecological networks in a changing climate. Advances in Ecological Research 42: 71–138.CrossRefGoogle Scholar
  52. Woodward, G., J. B. Dybkjaer, J. S. Òlafsson, G. M. Gìslason, E. R. Hannesdòttir & N. Friberg, 2010b. Sentinel systems on the razor’s edge: effects of warming on Arctic geothermal stream ecosystems. Global Change Biology 16: 1979–1991.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nicolas Hette-Tronquart
    • 1
  • Jean-Marc Roussel
    • 2
  • Bernard Dumont
    • 3
  • Virginie Archaimbault
    • 1
  • Didier Pont
    • 1
  • Thierry Oberdorff
    • 4
  • Jérôme Belliard
    • 1
  1. 1.Irstea, UR HBANAntonyFrance
  2. 2.INRA, UMR 985 “Ecologie et Santé des Ecosystèmes”RennesFrance
  3. 3.Irstea, UR HYAXAix-en-ProvenceFrance
  4. 4.UMR CNRS 7208-IRD 207-MNHN-UPMC “Biologie des Organismes et Ecosystemes Aquatiques”, DMPA, Museum National d’Histoire NaturelleParisFrance

Personalised recommendations