, Volume 718, Issue 1, pp 85–92 | Cite as

Nutrient enrichment of a heterotrophic stream alters leaf litter nutritional quality and shredder physiological condition via the microbial pathway

  • N. M. ConnollyEmail author
  • R. G. Pearson
Primary Research Paper


Streams receiving agricultural runoff are typically enriched with nutrients, which variously impact stream communities. We examined the effects of phosphate and nitrate enrichment on leaf litter breakdown, microbial biomass and the nutrition of an invertebrate shredder to determine how nutrients are transferred through the stream detrital food web. Using artificial streams, individuals of Anisocentropus kirramus (Trichoptera: Calamoceratidae) were fed leaves of Apodytes brachystylus (Icacinaceae) under different nutrient regimes. We measured the amount of leaf material consumed or decomposed and the microbial biomass colonising the leaves. The dry mass, and protein, lipid and carbohydrate composition of A. kirramus larvae were determined after 28-day feeding on the leaves. Supplements of phosphorus, but not nitrogen, enhanced leaf breakdown, microbial growth and growth of larvae. Microbial biomass and dry mass of larvae increased with nutrient enrichment and they were significantly correlated. Thus, the phosphorus supplement was transmitted through the detrital food web via the microbial pathway, resulting in higher nutritional quality of leaves and enhanced physiological condition of the shredder. Understanding such subtle relationships is important in determining the impacts of anthropogenic contaminants on freshwater ecosystems.


Nutrient Invertebrate Rainforest Decomposition Litter Shredder Tropic 



We thank Linda Davis for her assistance, the ACTFR Analytical Laboratory for nutrient analyses, and two anonymous referees for constructive comments. Financial support was provided by the Cooperative Research Centre for Tropical Rainforest Ecology and Management, and the Land and Water Resources R&D Corporation.


  1. Anderson, N. H. & E. Grafius, 1975. Utilisation and processing of allochthonous material by stream Trichoptera. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 19: 3083–3088.Google Scholar
  2. Anderson, N. H. & J. R. Sedell, 1979. Detritus processing by macroinvertebrates in stream ecosystems. Annual Review of Entomology 24: 351–377.CrossRefGoogle Scholar
  3. Arsuffi, T. L. & K. Suberkropp, 1985. Selective feeding by stream caddisfly (Trichoptera) detritivores on leaves with fungal-colonized patches. Oikos 45: 50–58.CrossRefGoogle Scholar
  4. Attrill, M. J. & M. H. Depledge, 1997. Community and population indicators of ecosystem health: targeting links between levels of biological organisation. Aquatic Toxicology 38: 183–197.CrossRefGoogle Scholar
  5. Bainbridge, Z. T., J. E. Brodie, J. W. Faithful, D. A. Sydes & S. E. Lewis, 2009. Identifying the land-based sources of suspended sediments, nutrients and pesticides discharged to the Great Barrier Reef from the Tully–Murray Basin, Queensland, Australia. Marine and Freshwater Research 60: 1081–1090.CrossRefGoogle Scholar
  6. Baird, D. J., S. S. Brown, L. Lagadic, M. Liess, L. Maltby, M. Moreira-Santos, R. Schulz & G. I. Scott, 2007. In situ-based effects measures: determining the ecological relevance of measured responses. Integrated Environmental Assessment and Management 3: 259–267.PubMedCrossRefGoogle Scholar
  7. Bastian, M., L. Boyero, B. R. Jackes & R. G. Pearson, 2007. Leaf litter diversity and shredder preferences in an Australian tropical rain-forest stream. Journal of Tropical Ecology 23: 219–229.CrossRefGoogle Scholar
  8. Benfield, E. F. & J. R. Webster, 1985. Shredder abundance and leaf breakdown in an Appalachian Mountain stream. Freshwater Biology 15: 113–120.CrossRefGoogle Scholar
  9. Cheshire, K., L. Boyero & R. G. Pearson, 2005. Food webs in tropical Australian streams: shredders are not scarce. Freshwater Biology 50: 748–769.CrossRefGoogle Scholar
  10. Elwood, J. W., J. D. Newbold, A. F. Trimble & R. W. Stark, 1981. The limiting role of phosphorus in a woodland stream ecosystem: effects of P enrichment on leaf decomposition and primary producers. Ecology 62: 146–158.CrossRefGoogle Scholar
  11. Feltena, V., G. Charmantier, M. Charmantier-Daures, F. Aujoulat, J. Garrica & O. Geffard, 2008. Physiological and behavioural responses of Gammarus pulex exposed to acid stress. Comparative Biochemistry and Physiology C 147: 189–197.Google Scholar
  12. Ferreira, V. & E. Chauvet, 2011. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology 17: 551–564.CrossRefGoogle Scholar
  13. Ferreira, V., V. Gulis & M. A. S. Graça, 2006. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149: 718–729.PubMedCrossRefGoogle Scholar
  14. Fisher, S. G. & G. E. Likens, 1972. Stream ecosystem: organic energy budget. BioScience 22: 33–35.CrossRefGoogle Scholar
  15. Fisher, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs 43: 421–439.CrossRefGoogle Scholar
  16. Fittkau, E. J. & H. Klinge, 1973. On biomass and trophic structure of the Central Amazon rain forest ecosystem. Biotropica 5: 2–14.CrossRefGoogle Scholar
  17. France, R. L., 2011. Leaves as “crackers”, biofilm as “peanut butter”: exploratory use of stable isotopes as evidence for microbial pathways in detrital food webs. Oceanological and Hydrobiological Studies (International Journal of Oceanography and Hydrobiology) 40: 110–115.CrossRefGoogle Scholar
  18. Groome, A. P. & A. G. Hildrew, 1989. Food quality for detritivores in streams of contrasting pH. Journal of Animal Ecology 58: 863–881.CrossRefGoogle Scholar
  19. Gulis, V., V. Ferreira & M. A. S. Graça, 2006. Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshwater Biology 51: 1655–1669.CrossRefGoogle Scholar
  20. Howarth, R. W. & S. G. Fisher, 1976. Carbon, nitrogen, and phosphorus dynamics during leaf decay in nutrient-enriched stream microecosystems. Freshwater Biology 6: 221–228.CrossRefGoogle Scholar
  21. Iversen, T. M., 1974. Ingestion and growth in Sericostoma personatum (Trichoptera) in relation to the nitrogen content of digested leaves. Oikos 25: 278–282.CrossRefGoogle Scholar
  22. Kaushik, N. K. & H. B. N. Hynes, 1971. The fate of dead leaves that fall into streams. Archiv fur Hydrobiologie 68: 465–515.Google Scholar
  23. Koop, J. H. E., C. Winkelmann, J. Becker, C. Hellmann & C. Ortmann, 2011. Physiological indicators of fitness in benthic invertebrates: a useful measure for ecological health assessment and experimental ecology. Aquatic Ecology 45: 547–559.CrossRefGoogle Scholar
  24. Li, A. O. Y. & D. Dudgeon, 2008. The effects of leaf litter characteristics on feeding and fitness of a tropical stream shredder, Anisocentropus maculatus (Trichoptera: Calamoceratidae). Marine and Freshwater Research 59: 897–901.CrossRefGoogle Scholar
  25. Maltby, L., C. Naylor & P. Calow, 1990. Field deployment of a scope for growth assay involving Gammarus pulex, a freshwater benthic invertebrate. Ecotoxicology and Environmental Safety 19: 292–300.PubMedCrossRefGoogle Scholar
  26. Mann, R. & S. Gallager, 1985. Physiological and biochemical energetics of larvae of Terido navalis L. and Bankia gouldi (Bartsch) (Bivalvia: Teredinidae). Journal of Experimental Marine Biology and Ecology 85: 211–228.CrossRefGoogle Scholar
  27. Melillo, J. M., R. J. Naiman, J. D. Aber & A. E. Linkins, 1984. Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bulletin of Marine Science 35: 341–356.Google Scholar
  28. Meyer, J. L. & C. Johnson, 1983. The influence of elevated nitrate concentration on rate of leaf decomposition in a stream. Freshwater Biology 13: 177–183.CrossRefGoogle Scholar
  29. Newbold, J. D., R. V. O’Neill, J. W. Elwood & W. Van Winkle, 1982. Nutrient spiralling in streams: implications for nutrient limitation and invertebrate activity. The American Naturalist 120: 628–652.CrossRefGoogle Scholar
  30. Nolen, J. A. & R. G. Pearson, 1992. Life history studies of Anisocentropus kirramus Neboiss (Trichoptera: Calamoceratidae) in a tropical Australian rainforest stream. Aquatic Insects 14: 213–221.CrossRefGoogle Scholar
  31. Nolen, J. A. & R. G. Pearson, 1993. Processing of litter from an Australian tropical stream by Anisocentropus kirramus Neboiss (Trichoptera: Calamoceratidae). Freshwater Biology 29: 469–479.CrossRefGoogle Scholar
  32. Pearson, R. G. & N. M. Connolly, 2000. Nutrient enhancement, food quality and community dynamics in a tropical rainforest stream. Freshwater Biology 43: 31–42.CrossRefGoogle Scholar
  33. Pearson, R. G. & R. K. Tobin, 1989. Litter consumption by invertebrates from an Australian tropical rainforest stream. Archiv fur Hydrobiologie 116: 71–80.Google Scholar
  34. Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwater Biology 4: 343–368.CrossRefGoogle Scholar
  35. Peterson, B. J., J. E. Hobbie & T. L. Corliss, 1983. A continuous-flow periphyton bioassay: tests of nutrient limitation in a tundra stream. Limnology and Oceanography 28: 583–591.CrossRefGoogle Scholar
  36. Ramirez, A., C. M. Pringle & L. Molina, 2003. Effects of stream phosphorus levels on microbial respiration. Freshwater Biology 48: 88–97.CrossRefGoogle Scholar
  37. Schnurer, J. & T. Rosswall, 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology 43: 1256–1261.PubMedGoogle Scholar
  38. Stout, J., 1980. Leaf decomposition rates in a Costa Rican lowland tropical rainforest stream. Biotropica 12: 264–272.CrossRefGoogle Scholar
  39. Suberkropp, K. & M. J. Klug, 1976. Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology 57: 707–719.CrossRefGoogle Scholar
  40. Swisher, R. & G. C. Carroll, 1980. Fluorescein diacetate hydrolysis as an estimator of microbial biomass on coniferous needle surfaces. Microbial Ecology 6: 217–226.CrossRefGoogle Scholar
  41. White, D. S. & B. L. Howes, 1994. Nitrogen incorporation into decomposing litter of Spartina alterniflora. Limnology and Oceanography 39: 133–140.CrossRefGoogle Scholar
  42. Winterbourn, M. J. & S. F. Davis, 1976. Ecological role of Zealonopsyche ingens (Trichoptera: Oeconesidae) in a beech forest stream ecosystem. Australian Journal of Marine and Freshwater Research 27: 197–216.CrossRefGoogle Scholar
  43. Woodward, G., M. O. Gessner, P. S. Giller, V. Gulis, S. Hladyz, A. Lecerf, B. Malmqvist, B. G. McKie, S. D. Tiegs, H. Cariss, M. Dobson, A. Elosegi, V. Ferreira, M. A. S. Graça, T. Fleituch, J. O. Lacoursière, M. Nistorescu, J. Pozo, G. Risnoveanu, M. Schindler, A. Vadineanu, L. B.-M. Vought & E. Chauvet, 2012. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336: 1438–1440.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Marine and Tropical Biology and TropWaterJames Cook UniversityTownsvilleAustralia
  2. 2.Queensland Department of Environment and Heritage ProtectionTownsvilleAustralia

Personalised recommendations