Advertisement

Hydrobiologia

, Volume 739, Issue 1, pp 133–143 | Cite as

Effects of a simulated upwelling event on the littoral epilithic diatom community of an ancient tropical lake (Lake Matano, Sulawesi Island, Indonesia)

  • Andrew J. BramburgerEmail author
  • Paul B. Hamilton
  • G. Douglas Haffner
SPECIATION IN ANCIENT LAKES 6

Abstract

Currently accepted paradigms in ecology dictate that disturbances at all temporal scales exert a significant influence on community structure and ecosystem stability. Microbial community resistance and resilience to perturbations are largely dependent on the physiological flexibility and taxonomic richness of the pre-perturbation community. Can a microbial community dominated by late-successional endemic taxa exhibit resistance and/or functional redundancy? In this study, intact littoral epilithic diatom communities from an ancient, tropical lake were exposed to oxygenated, filtered hypolimnetic water to simulate a lake upwelling event. Filtered lake surface water was used as a control. Discriminant function models based on changes in density and relative abundance of taxa after both treatments assigned samples to their correct treatment groups 100% of the time. A change in relative abundance of taxa between the two treatments indicated that competitive outcomes varied with a shift in the water chemistry, with different taxa exhibiting positive, negative, or neutral numerical responses. These results suggest that highly endemic diatom communities can maintain community function through shifts in competitive dynamics. We conclude that condition-specific competition models can be invoked to explain diatom community dynamics despite the inability of diatoms to use behavior to respond to changes in the abiotic environment.

Keywords

Ancient lakes Diatoms Community ecology Disturbance Lake Matano Sulawesi 

References

  1. Allison, S. D. & J. B. H. Martiny, 2008. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences 105: 11512–11519.CrossRefGoogle Scholar
  2. Barata, C., F. Hontoria, F. Amat & R. Browne, 1996. Competition between sexual and parthenogenetic Artemia: temperature and strain effects. Journal of Experimental Marine Biology and Ecology 196: 313–328.CrossRefGoogle Scholar
  3. Bramburger, A. J., G. D. Haffner & P. B. Hamilton, 2004. Examining the distributional patterns of the diatom flora of the Malili Lakes, Sulawesi, Indonesia. In Poulin M. (ed.), Proceedings of the 17th International Diatom Symposium, Biopress Limited, Bristol: 11–25.Google Scholar
  4. Bramburger, A. J., P. B. Hamilton, P. E. Hehanussa, F. Hinz & G. D. Haffner, 2006. An examination of species within the genus Surirella from the Malili Lakes, Sulawesi Island, Indonesia, with descriptions of 11 new taxa. Diatom Research 21: 1–56.CrossRefGoogle Scholar
  5. Bramburger, A. J., P. B. Hamilton, P. E. Hehanussa & G. D. Haffner, 2008. Factors regulating the community composition and relative abundance of taxa in the diatom communities of the Malili Lakes, Sulawesi Island, Indonesia. Hydrobiologia 615: 215–224.CrossRefGoogle Scholar
  6. Brock, T. C. M., R. M. M. Roijackers, R. Rollon, F. Bransen & L. Van der Heyden, 1995. Effects of nutrient loading and insecticide application on the ecology of Elodea-dominated freshwater microcosms II. Responses of macrophytes, periphyton, and macroinvertebrate grazers. Archives of Hydrobiology 134: 53–74.Google Scholar
  7. Clements, F. E., 1916. Plant Succession: An Analysis of the Development of Vegetation. Publication/Carnegie Institution, Washington, DC. 242.Google Scholar
  8. Connel, J. H., 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35: 131–138.CrossRefGoogle Scholar
  9. Costanzo, K. S., B. Kesavaraju & S. A. Juliano, 2005. Condition-specific competition in container mosquitoes: the role of noncompeting life-history stages. Ecology 86: 3289–3295.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Crowe, S. A., A. H. O’Neill, S. Katsev, P. E. Hehanussa, G. D. Haffner, B. Sundby, A. Mucci & D. A. Fowle, 2008. The biogeochemistry of tropical lakes: a case study from Lake Matano, Indonesia. Limnology and Oceanography 53: 319–331.CrossRefGoogle Scholar
  11. Fenchel, T. & B. J. Finlay, 2004. The ubiquity of small species: patterns of local and global diversity. BioScience 54: 777–784.CrossRefGoogle Scholar
  12. Fleeger, J. W., K. R. Carman & R. M. Nisbet, 2003. Indirect effects of contaminants in aquatic systems. The Science of the Total Environment 317: 207–233.PubMedCrossRefGoogle Scholar
  13. Forrow, D. M. & L. Maltby, 2000. Toward a mechanistic understanding of contaminant-induced changes in detritus processing in streams: direct and indirect effects on detritivore feeding. Environmental Toxicology and Chemistry 19: 2100–2106.CrossRefGoogle Scholar
  14. Grassle, J. F., 1989. Species diversity in deep-sea communities. Trends in Ecology & Evolution 4: 12–15.CrossRefGoogle Scholar
  15. Grassle, J. F., 1991. Deep-sea benthic biodiversity. Bioscience 41: 464–469.CrossRefGoogle Scholar
  16. Grime, J. P., 1998. Benefits of plant diversity to ecosystems: immediate, filter, and founder effects. Journal of Ecology 86: 902–910.CrossRefGoogle Scholar
  17. Haffner, G. D., P. E. Hehanussa & D. Hartoto, 2001. The biology and physical processes of large lakes of Indonesia. In Munawar, M. & R. E. Hecky (eds), The Great Lakes of the World. Backhuys Publishers, Leiden: 183–192.Google Scholar
  18. Hamilton, P. B., I. Lavoie & M. Poulin, 2012. Spatial, seasonal and inter-annual variability in environmental characteristics and phytoplankton standing stock of the temperate, lowland Rideau River, Ontario, Canada. River Research and Applications 28: 1551–1566.CrossRefGoogle Scholar
  19. Hirst, H., I. Jüttner & S. J. Omerod, 2002. Comparing the responses of diatoms and macroinvertebrates to metals in uplands streams of Wales and Cornwall. Freshwater Biology 47: 1752–1765.CrossRefGoogle Scholar
  20. Holway, D. A., A. V. Suarez & T. J. Case, 2002. Role of abiotic factors in governing susceptibility to invasion: a test with argentine ants. Ecology 83: 1610–1619.CrossRefGoogle Scholar
  21. Huisman, J., R. R. Jonker, C. Zonneveld & F. J. Weissing, 1999. Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80: 211–222.CrossRefGoogle Scholar
  22. Huston, M. A., 1994. Biological Diversity: The coexistence of Species on Changing Landscapes. Cambridge University Press, Cambridge.Google Scholar
  23. Hustedt, F., 1942. Süßwasser-Diatomeen des indomalayischen Archipels und der Hawaii-Inseln. Internatione Revue der gesamten Hydrobiologie und Hydrographie 42: 1–252.Google Scholar
  24. Hutchinson, G. E., 1961. The Paradox of the Plankton. American Naturalist 95: 137–140.Google Scholar
  25. Kennedy, A. C. & K. L. Smith, 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil 170: 75–86.CrossRefGoogle Scholar
  26. Lodge, D. M., 1993. Species invasions and deletions: community effects and responses to climate and habitat change. In Kareiva, O. M., J. G. Kingsolver & R. B. Huey (eds), Biotic Interactions and Global Change. Sinauer Associates, Sunderland: 367–387.Google Scholar
  27. Lorimer, C. G. & L. E. Frelich, 1989. A methodology for estimating canopy disturbance frequency and intensity in dense temperate forests. Canadian Journal of Forest Research 19: 651–663.CrossRefGoogle Scholar
  28. Meyer, J. L., 1997. Stream health: incorporating the human dimension to advance stream ecology. Journal of the North American Benthological Society 16: 439–447.CrossRefGoogle Scholar
  29. Moser, G., H. Lange-Bertalot & D. Metzeltin, 1998. Insel der Endemiten. Geobotanisches Phänomen Neukaledonien. Diatomeenflora einer Tropeninsel. Bibliotheca Diatomologica 38: 1–464.Google Scholar
  30. Navarette, S. A. & B. A. Menge, 1996. Keystone predation and interaction strength: interactive effects of predators on their main prey. Ecological Monographs 66: 409–429.CrossRefGoogle Scholar
  31. Niyogi, D., D. M. McKnight & W. M. Lewis, 1999. Influences of water and substrate quality for periphyton in a montane stream affected by acid mine drainage. Limnology and Oceanography 44: 804–809.CrossRefGoogle Scholar
  32. Paine, R. T., 1966. Food web complexity and species diversity. American Naturalist 100: 65–75.CrossRefGoogle Scholar
  33. Palmer, M. A., 1997. Biodiversity and ecosystem processes in freshwater sediments. Ambio 26: 571–577.Google Scholar
  34. Perry, D., 1988. Landscape pattern and forest pests. Northwest Environmental Journal 4: 213–228.Google Scholar
  35. Persson, L., 1986. Temperature-induced shift in foraging ability in two fish species, roach (Rutilus rutilus) and perch (Perca fluviatilis): implications for coexistence between poikilotherms. Journal of Animal Ecology 55: 829–839.CrossRefGoogle Scholar
  36. Peterson, C. G. & R. J. Stevenson, 1992. Resistance and resilience of lotic algal communities: importance of disturbance timing and current. Ecology 73: 1445–1461.CrossRefGoogle Scholar
  37. Ruggiu, D., A. Luglié, A. Cattaneo & P. Panzani, 1998. Paleoecological evidence for diatom response to metal pollution in Lake Orta (N. Italy). Journal of Paleolimnology 20: 333–345.CrossRefGoogle Scholar
  38. Sabater, S., 2000. Diatom communities as indicators of environmental stress in the Guadiamar River, S-W. Spain, following a major mine tailings spill. Journal of Applied Phycology 12: 113–124.CrossRefGoogle Scholar
  39. Sanders, H. L., 1968. Marine benthic diversity: a comparative study. American Naturalist 102: 243–282.CrossRefGoogle Scholar
  40. Taniguchi, Y. & S. Nakano, 2000. Condition-specific competition: implications for the altitudinal distribution of stream fishes. Ecology 81: 2027–2039.CrossRefGoogle Scholar
  41. Tilman, D., 1977. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58: 338–348.CrossRefGoogle Scholar
  42. Underwood, A. J., 1992. Beyond BACI: the detection of environmental impacts on populations in the real, but variable, world. Journal of experimental marine biology and ecology 161: 145–178.CrossRefGoogle Scholar
  43. Van Bemmelin, R. W., 1970. The Geology of Indonesia. Government Printing Office, The Hague.Google Scholar
  44. Vyvermann, W., 1991. Diatoms from Papua New Guinea. Bibliotheca Diatomologica 22: 1–225.Google Scholar
  45. Vyverman, W., E. Verleyen, K. Sabbe, K. Vanhoutte, M. Sterken, D. A. Hodgson, D. G. Mann, S. Juggins, B. Van de Vijver, V. J. Jones, R. Flower, D. Roberts, V. A. Chepurnov, C. Kilroy, P. Vanormelingen & A. De Wever, 2007. Historical processes constrain patterns in global diatom diversity. Ecology 88: 1924–1931.PubMedCrossRefGoogle Scholar
  46. Wohl, D. L., S. Arora & J. R. Gladstone, 2004. Functional redundancy supports biodiversity in a closed and constant environment. Ecology 85: 1534–1540.CrossRefGoogle Scholar
  47. Zar, J. H., 1999. Biostatistical Analysis. Prentice-Hall, Upper Saddle River.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Andrew J. Bramburger
    • 1
    Email author
  • Paul B. Hamilton
    • 2
  • G. Douglas Haffner
    • 3
  1. 1.St. Lawrence River Institute of Environmental SciencesCornwallCanada
  2. 2.Research and Collections DivisionCanadian Museum of NatureOttawaCanada
  3. 3.Great Lakes Institute for Environmental Research (GLIER)University of WindsorWindsorCanada

Personalised recommendations