, Volume 735, Issue 1, pp 81–94 | Cite as

French naiad (Bivalvia: Margaritiferidae, Unionidae) species distribution models: prediction maps as tools for conservation

  • V. Prié
  • Q. Molina
  • B. Gamboa


Freshwater mussels are amongst the most threatened invertebrate species worldwide. For some species, current distribution has contracted to a point whereby original extent and ecological requirements are difficult to assess. As a consequence, extirpation rate is poorly evaluated, surveys are not targeted towards suitable areas and species are not taken into account in development impact studies. In this paper, we developed species distribution models (SDM) and produced maps of suitable habitat for conservation purposes. We focused on Margaritifera and Unio species for which enough reliable data could be collated for whole continental France. For the first time at this scale, SDM were based on a river stretch framework which proved to be very efficient. Models performances were highly discriminative, allowing drawing predictive maps of habitat suitability. As no human-induced variables were included, our models approximate species’ ideal original range. Range contraction could then be quantified by comparing the extent of occurrence (EOO) predicted by the models to the currently known EOO of the species. For most species, known distribution matches the predicted suitable habitat suggesting that geographic barriers between main drainages do not impact naiads’ distribution.


Range contraction Inferred decline River stretches Continental insularity 



Most of the data used for the models come from Biotope database and were compiled by Vincent Prié, Xavier Cucherat, Laurent Philippe, Benjamin Adam, Quentin Molina, Nicolas Legrand, Ludwick Simon, Charlie Pichon, Nicolas Patry, Noélie Tapko (Biotope) and includes specimens collected by Henri Persat (Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés), Michel Bramard, Florent Lamand and Alain Serena (Office National de l’Eau et des Milieux Aquatiques), Jean-Michel Bichain and Antoine Wagner. The following kindly provided us with reliable additional personal data: Gilbert Cochet, Olivier Hesnard, Benoit Lecaplain, Laurent Paris, Sylvain Vrignaud and Pierre-Yves Pasco. The authors also thank Nicolas Puillandre and Gargo Fontaine for constructive discussion during the redaction of this paper. Ian Killeen has edited the English. We also thank two anonymous reviewers for their constructive comments that allowed improving the overall quality of the manuscript. This study was produced with financial support of Biotope consultancy.

Supplementary material

10750_2013_1597_MOESM1_ESM.pdf (120.7 mb)
Online Resource 1: SDM prediction maps and species account. (PDF 123603 kb)
10750_2013_1597_MOESM2_ESM.pdf (6.2 mb)
Online Resource 2: Single and combined SDM suitable habitat prediction and explanation variables respective weight, as illustrated with P. littoralis. (PDF 6308 kb)


  1. Allouche, O., A. Tsoar & R. Kadmon, 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232.CrossRefGoogle Scholar
  2. Araújo, M. B. & M. New, 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22: 42–47.CrossRefGoogle Scholar
  3. Araujo, R. & M. A. Ramos, 2000a. Status and conservation of the giant European freshwater pearl mussel (Margaritifera auricularia) (Spengler, 1793) (Bivalvia: Unionoidea). Biological Conservation 96: 233–239.CrossRefGoogle Scholar
  4. Araujo, R. & M. A. Ramos, 2000b. A critical revision of the historical distribution of the endangered Margaritifera auricularia (Spengler, 1782) (Mollusca: Margaritiferidae) based on Museum specimens. Journal of Conchology 37: 49–59.Google Scholar
  5. Araujo, R., J. Reis, A. Machordom, C. Toledo, M. J. Madeira, I. Gomez, J. C. Velasco, J. Morales, J. M. Barea, P. Ondina & I. Ayala, 2009. Las náyades de la península Ibérica. Iberus 27: 7–72.Google Scholar
  6. Arntzen, J., 2006. From descriptive to predictive distribution models: a working example with Iberian amphibians and reptiles. Frontiers in Zoology 3: 8.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bates, J. M. & C. Granger, 1969. The combination of forecast. Operation Research Quarterly 20: 451–463.CrossRefGoogle Scholar
  8. Bauer, G. & K. Wächtler, 2001. Ecology and Evolution of the Freshwater Mussels Unionoida. Springer, Berlin.CrossRefGoogle Scholar
  9. Bogan, A. E., 2008. Global diversity of freshwater mussels (Mollusc, Bivalvia) in freshwater. Hydrobiologia 595: 139–147.CrossRefGoogle Scholar
  10. Breiman, L., 2001. Random forests. Machine Learning 45: 5–32.CrossRefGoogle Scholar
  11. Brunet, R., 2002. Lignes de force de l’espace européen. Mappemonde 66: 14–19.Google Scholar
  12. Buisson, L. & G. Grenouillet, 2009. Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Diversity and Distributions 15: 613–626.CrossRefGoogle Scholar
  13. Buisson, L., L. Blanc & G. Grenouillet, 2007. Modelling stream fish species distribution in a river network: the relative effects of temperature versus physical factors. Ecology of Freshwater Fish 17: 244–257.CrossRefGoogle Scholar
  14. Caissie, D., 2006. The thermal regime of rivers: a review. Freshwater Biology 51: 1389–1406.CrossRefGoogle Scholar
  15. De’ath, G., 2007. Boosted trees for ecological modeling and prediction. Ecology 88: 243–251.PubMedCrossRefGoogle Scholar
  16. Devictor, V., R. Julliard, D. Couvet & F. Jiguet, 2008. Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society of London—B Biological Sciences 275: 2743–2748.CrossRefGoogle Scholar
  17. Donlan, C. J., J. Berger, C. E. Bock, J. H. Bock, D. A. Burney, J. A. Estes, D. Foreman, P. S. Martin, G. W. Roemer, F. A. Smith, M. E. Soule & H. W. Greene, 2006. Pleistocene rewilding: an optimistic agenda for twenty-first century conservation. The American Naturalist 168: 660–681.CrossRefGoogle Scholar
  18. Elith, J. & J. R. Leathwick, 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics 40: 677–697.CrossRefGoogle Scholar
  19. Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank & D. Alsdorf, 2007. The shuttle radar topography mission. Reviews of Geophysics 45: RG2004.CrossRefGoogle Scholar
  20. Fauna_Europaea, 2004. Fauna Europaea database. Accessed July 2012.
  21. Fielding, A. H. & J. F. Bell, 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38–49.CrossRefGoogle Scholar
  22. Foreman, D., 2004. Rewilding North America. Island Press, Washington, DC.Google Scholar
  23. Geist, J., 2010. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): a synthesis of conservation genetics and ecology. Hydrobiologia 644: 69–88.CrossRefGoogle Scholar
  24. Graf, D. L., 2011. Types of French freshwater mussels (Mollusca, Bivalvia, Unionoidea) in the Arnould Locard collection at the Muséum National d’Histoire Naturelle, Paris. Zoosystema 33: 451–514.CrossRefGoogle Scholar
  25. Graf, D. L. & K. Cummings, 2007. Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida). Journal of Molluscan Studies 73: 291–314.CrossRefGoogle Scholar
  26. Grenouillet, G., L. Buisson, N. Casajus & S. Lek, 2010. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34: 9–17.CrossRefGoogle Scholar
  27. Hammond, D. & A. R. Pryce, 2007. Climate Change Impacts and Water Temperature. Using Science to Create a Better Place. Environment Agency, Bristol.Google Scholar
  28. Hanley, J. A. & B. J. Mcneil, 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143: 29–36.PubMedGoogle Scholar
  29. Hastie, T. & R. Tibshirani, 1990. Generalised Additive Models. Chapman and Hall, London.Google Scholar
  30. Higgins, J. V. & C. Duigan, 2009. So much to do, so little time: identifying properties for freshwater biodiversity conservation in the United States and Britain. In Boon, P. J. & C. M. Pringle (eds), Assessing the Conservation Value of Freshwaters. Cambridge University Press, New York: 61–90.Google Scholar
  31. Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.CrossRefGoogle Scholar
  32. Hijmans, R. J., S. Phillips, J. Leathwick & J. Elith, 2012. Dismo—species distribution modeling. In R. Project (ed.).Google Scholar
  33. Hochberg, M. E. & A. R. Ives, 1999. Can natural enemies enforce geographical range limits? Ecography 22: 268–276.CrossRefGoogle Scholar
  34. INPN Database, 2012. Muséum National d’Histoire Naturelle (ed). 2003–2012. Inventaire national du Patrimoine naturel.
  35. IUCN, 2003. Guidelines for Application of IUCN Red List Criteria at Regional Levels, Version 3.0. IUCN Species Survival Commission, IUCN, Gland.Google Scholar
  36. IUCN Standards and Petitions Subcommittee, 2011. Guidelines for Using the IUCN Red List Categories and Criteria, Version 9.0. Prepared by the Standards and Petitions Subcommittee. Downloadable from
  37. Lassalle, G. & E. Rochard, 2009. Impact of twenty-first century climate change on diadromous fish spread over Europe, North Africa and the Middle East. Global Change Biology 15: 1072–1089.CrossRefGoogle Scholar
  38. Lassalle, G., M. Béguer, L. Beaulaton & E. Rochard, 2009. Learning from the past to predict the future: responses of European diadromous fish to climate change. American Fisheries Society Symposium 69: 175–193.Google Scholar
  39. Liu, C., P. M. Berry, T. P. Dawson & R. G. Pearson, 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385–393.CrossRefGoogle Scholar
  40. Locard, A., 1882. Catalogue général des mollusques vivants de France; mollusques terrestres, des eaux douces et des eaux saumâtres. Prodrome de Malacologie Française, Paris.Google Scholar
  41. Locard, A., 1889. Contributions à la faune malacologique française: Catalogue des espèces françaises appartenant aux genres Margaritana et Unio connues jusqu’à ce jour. Paris.Google Scholar
  42. Lydeard, C., R. H. Cowie, W. F. Ponder, A. E. Bogan, P. Bouchet, S. A. Clark, K. S. Cummings, T. J. Frest, O. Gargominy, D. G. Herbert, R. Hershler, K. E. Perez, B. Roth, M. B. Seddon, E. E. Strong & F. G. Thompson, 2004. The global decline of nonmarine Mollusks. BioScience 54: 321–330.CrossRefGoogle Scholar
  43. Mac Nally, R., 2000. Regression and model-building in conservation biology, biogeography and ecology: the distinction between-and reconciliation of-‘predictive’ and ‘explanatory’ models. Biological Conservation 9: 655–671.Google Scholar
  44. Manel, S., H. C. Williams & S. J. Ormerod, 2001. Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38: 921–931.CrossRefGoogle Scholar
  45. Mccullagh, P. & J. A. Nelder, 1989. Generalized Linear Models. Chapman and Hall, London.CrossRefGoogle Scholar
  46. Moatar, F. & J. Gailhard, 2006. Water temperature behaviour in the River Loire since 1976 and 1881. Geoscience 338: 319–328.CrossRefGoogle Scholar
  47. Mohseni, O. & H. G. Stefan, 1999. Stream temperature/air temperature relationship: a physical interpretation. Journal of Hydrology 218: 124–141.CrossRefGoogle Scholar
  48. Pearce, J. & S. Ferrier, 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133: 225–245.CrossRefGoogle Scholar
  49. Persat, H. & P. Keith, 2011. Biogéographie et historique de la mise en place des peuplements ichtyologiques de France métropolitaine. In Keith, P., H. Persat, E. Feunteun & J. Allardy (eds), Les poissons d’eau douce de France, Biotope-Mèze and MNHN, Paris: 552.Google Scholar
  50. Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modelling of species geographic distributions. Ecological Modelling 190: 231–259.CrossRefGoogle Scholar
  51. Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of North American Benthological Society 16: 391–409.CrossRefGoogle Scholar
  52. Ponder, W. F. & D. Lunney, 1999. The other 99%: the conservation and biodiversity of invertebrates. Royal Zoological Society of New South Wales, Mosman.Google Scholar
  53. Prié, V. & N. Puillandre, 2013. Molecular phylogeny, taxonomy and distribution of French naiads (Bivalvia, Unionidae). Hydrobiologia. SI Freshwater Bivalves. (submitted).Google Scholar
  54. Prié, V., P. Bousquet, E. Tabacchi, A. Séréna, B. Adam, P. Jourde, T. Deschamps, M. Charneau, T. Ticot, M. Bramard & G. Cochet, 2010. Nouvelles populations de Grande Mulette Margaritifera auricularia (Spengler, 1793) (Bivalvia: Margaritiferidae) découvertes dans le sud-ouest de la France. MalaCo 6: 294–297.Google Scholar
  55. Prié, V., N. Puillandre & P. Bouchet, 2012. Bad taxonomy can kill: molecular reevaluation of Unio mancus Lamarck, 1819 (Bivalvia: Unionidae) and its accepted subspecies. Knowledge and Management of Aquatic Ecosystems 405: 18.Google Scholar
  56. R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0.
  57. Régnier, C., B. Fontaine & P. Bouchet, 2009. Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conservation Biology 23(5): 1214–1221.PubMedCrossRefGoogle Scholar
  58. Richter, B. D., D. P. Braun, M. A. Mendelson & L. L. Master, 1997. Threats to imperiled freshwater fauna. Conservation Biology 11: 1081–1093.CrossRefGoogle Scholar
  59. Sabater, S. & K. Tockner, 2010. Effects of hydrologic alterations on the ecological quality of river ecosystems. In Sabater, S. & D. Barcelo (eds), Water Scarcity in the Mediterranean: Perspectives Under Global Change, Vol. 8. Springer, Berlin: 15–39.CrossRefGoogle Scholar
  60. Sagarin, R. D. & S. D. Gaines, 2002. Geographical abundance distributions of coastal invertebrates: using one-dimensional ranges to test biogeographic hypotheses. Journal of Biogeography 29: 985–997.CrossRefGoogle Scholar
  61. Thuiller, W., B. Lafourcade & M. Araujo, 2009. ModOperating Manual for BIOMOD. 90. In R Development Core Team (ed.).Google Scholar
  62. Vogt, J., P. Soille, A. De Jager, E. Rimaviciute, W. Mehl, S. Foisneau, K. Bodis, J. Dusart, M.-L. Paracchini, P. Haastrup & C. Bamps, 2007. A pan-European river and catchment database. In JRC Publications Repository (ed.).Google Scholar
  63. Warfe, D. M., N. E. Pettit, R. H. Magierowski, B. J. Pusey, P. M. Davies, M. M. Douglas & S. E. Bunn, 2013. Hydrological connectivity structures concordant plant and animal assemblages according to niche rather than dispersal processes. Freshwater Biology 58: 292–305.CrossRefGoogle Scholar
  64. Wilson, C. D. & D. Roberts, 2010. Modelling distributional trends to inform conservation strategies for an endangered species. Diversity and Distributions 17(1): 182–189.CrossRefGoogle Scholar
  65. Wilson, C. D., D. Roberts & N. Reid, 2010. Applying species distribution modelling to identify areas of high conservation value for endangered species: a case study using Margaritifera margaritifera (L.). Biological Conservation 144: 821–829.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Département Systématique et Évolution, USM 603/UMR 7138 “Systématique, Adaptation, Évolution”, Équipe “Exploration de la Biodiversité”Muséum National d’Histoire NaturelleParis Cedex 05France
  2. 2.Biotope – Recherche & DéveloppementMèzeFrance

Personalised recommendations