Advertisement

Hydrobiologia

, Volume 739, Issue 1, pp 119–131 | Cite as

High cryptic diversity and persistent lineage segregation in endemic Romecytheridea (Crustacea, Ostracoda) from the ancient Lake Tanganyika (East Africa)

  • Isa Schön
  • Céline Poux
  • Erik Verheyen
  • Koen Martens
SPECIATION IN ANCIENT LAKES 6

Abstract

Ostracods form a substantial part of the endemic fauna of ancient lakes. Here, we have investigated the phylogenetic and phylogeographic patterns and genetic diversities of species of the endemic genus Romecytheridea from the Southern and Central part of Lake Tanganyika. We found that ostracod populations from four different localities are genetically highly differentiated from each other when analyzing the mitochondrial 16S region, while they are almost identical with genetic markers from the nuclear genome (D1-D2 from the large ribosomal subunit (LSU) and ITS). The criteria of the K/θ method for the evolutionary species concepts are fulfilled when analyzing 16S DNA sequence data, indicating that these populations are in fact different (cryptic) species with allopatric distribution. We discuss various hypotheses on how this high diversity could have originated. The complete lineage segregation can partly be explained by geographic isolation during periods of low lake level stands. But, other factors must have contributed to genetic isolation and speciation, as the two closest populations (Chimba and Katoto) from shallow parts of the Southern basin of Tanganyika are also geographically fully segregated.

Keywords

Ostracoda Cryptic species Ancient lakes Speciation Lake level fluctuations 

Notes

Acknowledgments

We acknowledge the ESF EUROCHORES programme Eurodiversity for funding the MOLARCH project (05_EDIV_FP237-MOLARCH).

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers & D. J. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.PubMedCrossRefGoogle Scholar
  2. Anseeuw, D., B. Nevado, P. Busselen, J. Snoeks & E. Verheyen, 2012. Extensive introgression among ancestral mtDNA lineages: phylogenetic relationships of the Utaka within the Lake Malawi Cichlid Flock. International Journal of Evolutionary Biology, in press. doi: 10.1155/2012/865603.
  3. Birky, C. W. Jr., 2013. Species detection and identification in sexual organisms using population genetic theory and DNA sequences. PLoS ONE 8: e52544. doi: 10.1371/journal.pone.0052544.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Birky, C. W., J. Adams, M. Gemmel & J. Perry, 2010. Using population genetic theory and DNA sequences for species identification in asexual organisms. PLoS ONE 5: e10609.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bode, S. N. S., D. K. Lamatsch, M. J. F. Martins, O. Schmit, J. Vandekerkhove, F. Mezquita, T. Namiotko, G. Rossetti, I. Schön, R. K. Butlin & K. Martens, 2010. Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Molecular Phylogenetics and Evolution 5: 542–552.CrossRefGoogle Scholar
  6. Bromham, L., D. Penny, A. Rambaut & M. D. Hendy, 2000. The power of relative rate tests depends on the data. Journal of Molecular Evolution 50: 296–301.PubMedGoogle Scholar
  7. Brown, K. J., L. Rüber, R. Bills & J. J. Day, 2010. Mastacemblid eels support Lake Tanganyika as an evolutionary hotspot of diversification. BMC Evolutionary Biology 10: 188.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Clement, M., D. Posada & K. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.PubMedCrossRefGoogle Scholar
  9. Cohen, A. S., 2012. Scientific drilling and biological evolution in ancient lakes: lessons learned and recommendations for the future. Hydrobiologia 682: 3–25.CrossRefGoogle Scholar
  10. Cohen, A. S., M. J. Soreghan & C. A. Scholz, 1993. Estimating the age of ancient lakes: an example from Lake Tanganyika, East African rift system. Geology 21: 511–514.CrossRefGoogle Scholar
  11. Cohen, A. S., K. E. Lezzar, J. J. Tiercelin & M. Soreghan, 1997. New palaeographic and lake-level reconstructions of Lake Tanganyika: implications for tectonic, climatic and biological evolution in a rift lake. Basin Research 9: 107–132.CrossRefGoogle Scholar
  12. Cohen, A. S., J. R. Stone, K. R. M. Beuning, L. E. Park, P. N. Reinthal, D. Dettman, C. A. Scholz, T. C. Johnson, J. W. King, M. R. Talbot, E. T. Brown & S. J. Ivory, 2007. Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proceedings of the National Academy of Sciences, USA 104: 16422–16427.CrossRefGoogle Scholar
  13. Ducasse, O. & P. Carbonel, 1993. Tanganyikacythere nov.gen. (Cytherideinae, Ostracoda) du Lac Tanganyika: systématique des valves, donées écologiques. Geobios 26: 427–447.CrossRefGoogle Scholar
  14. Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin version 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.PubMedCrossRefGoogle Scholar
  16. Genner, M. J. & G. F. Turner, 2011. Ancient hybridization and phenotypic novelty within Lake Malawi’s Cichlid Fish Radiation. Molecular Biology and Evolution. doi: 10.1093/molbev/msr183.PubMedGoogle Scholar
  17. Gouy, M., S. Guindon & O. Gascuel, 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27: 221–224.PubMedCrossRefGoogle Scholar
  18. Guindon, S. & O. Gascuel, 2003. PhyML – a simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.PubMedCrossRefGoogle Scholar
  19. Hardin, G., 1960. The competitive exclusion principle. Science 131: 1292–1297.PubMedCrossRefGoogle Scholar
  20. Hebert, P. D. N. & T. R. Gregory, 2005. The promise of DNA barcoding for taxonomy. Systematic Biololgy 54: 852–859.CrossRefGoogle Scholar
  21. Hedrick, P. W., 2007. Sex: differences in mutation, recombination, selection, gene flow, and genetic drift. Evolution 61: 2750–2771.PubMedCrossRefGoogle Scholar
  22. Hillis, D. M. & M. T. Dixon, 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology 66: 411–453.PubMedCrossRefGoogle Scholar
  23. Koblmüller, S., N. Duftner, K. M. Sefc, M. Aibara, M. Stipacek, M. Blanc, B. Egger & C. Sturmbauer, 2007. Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika – the result of repeated introgressive hybridization. BMC Evolutionary Biology 7: 7. doi: 10.1186/1471-2148-7-7.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Koblmüller, S., W. Salzburger, B. Obermüller, E. Eigner, C. Sturmbauer & K. M. Sefc, 2011. Separated by sand, fused by dropping water: habitat barriers and fluctuating water levels steer the evolution of rock-dwelling cichlid populations in Lake Tanganyika. Molecular Ecology 20: 2272–2290.PubMedCrossRefGoogle Scholar
  25. Koenders, A., K. Martens, S. Halse & I. Schön, 2012. Cryptic species of the Eucypris virens species complex (Ostracoda, Crustacea) have invaded Western Australia. Biological Invasions 14: 2187–2201.CrossRefGoogle Scholar
  26. Lezzar K.-E., J.-J. Tiercelin, M. de Batist, A. S. Cohen, T. Bandora, P. van Rensbergen, C. le Turdu, W. Mifundu & J. Klerkx, 1996. New seismic stratigraphy and Late Tertiary history of the north Tanganyika basin, East African rift system, deduced from multichannel and high-resolution reflection seismic data and piston core evidence. Basin Research 8: 1–28.Google Scholar
  27. Marijnissen, S. A. E., E. Michel, S. R. Daniels, D. Erpenbeck, S. B. J. Menken & F. R. Schram, 2006. Molecular evidence for recent divergence of Lake Tanganyika endemic crabs (Decapoda: Platythelphusidae). Molecular Phylogenetics and Evolution 40: 628–634.PubMedCrossRefGoogle Scholar
  28. Martens, K., 1994. Ostracod speciation in ancient lakes: a review. In: Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes, Advances in Limnology, Vol. 44: 203–222.Google Scholar
  29. Martens, K., 1997. Speciation in ancient lakes. Trends in Ecology and Evolution 12: 177–182.PubMedCrossRefGoogle Scholar
  30. Martens, K., I. Schön, C. Meisch & D. J. Horne, 2008. Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595: 185–193.CrossRefGoogle Scholar
  31. Martens, K., S. Halse & I. Schön, 2012. Nine new species of Bennelongia DeDeckker & McKenzie, 1981 (Crustacea, Ostracoda) from Western Australia, with the description of one new subfamily. Europan Journal of Taxonomy 8: 1–56.Google Scholar
  32. Mims, M. C., C. D. Hulsey, B. M. Fitzpatrick & J. T. Streelman, 2010. Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids. Molecular Ecology 19: 940–951. doi: 10.1111/j.1365-294X.2010.04529.x.PubMedCrossRefGoogle Scholar
  33. Nevado, B., S. Koblmüller, C. Sturmbauer, J. Snoeks, J. Usano-Alemany & E. Verheyen, 2009. Complete mitochondrial DNA replacement in a Lake Tanganyika cichlid fish. Molecular Ecology 18: 4240–4255.PubMedCrossRefGoogle Scholar
  34. Nevado, B., T. Backeljau, M. Hanssens & E. Verheyen, 2011. Repeated unidirectional introgression of nuclear and mitochondrial DNA between four congeneric Tanganyikan cichlids. Molecular Biology and Evolution 28: 2253–2267.PubMedCrossRefGoogle Scholar
  35. Palumbi, S., R. A. Martin, S. Romano, W. O. McMillan, L. Stice & G. Grabowski, 1991. The simple fool’s Guide to PCR, Version 2. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu.Google Scholar
  36. Pfenninger, M. & K. Schwenk, 2007. Cryptic animal species are homogeneously distributed along taxa and biogeographic regions. BMC Evolutionary Biology 7: 121.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Posada, D., 2008. jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.PubMedCrossRefGoogle Scholar
  38. Quenouille, B., N. Hubert, E. Bermingham & S. Planes, 2011. Speciation in tropical seas: allopatry followed by range change. Molecular Phylogenetics and Evolution 58: 546–552.PubMedCrossRefGoogle Scholar
  39. Rome, D. R., 1962. Ostracodes. Exploration Hydrobiologique duc Lac Tanganyika (1946-1947). Résultats Scientifiques 3(8): 1–304.Google Scholar
  40. Ronquist, F., M. Teslenko, P. van der Mark, D. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, in press. doi: 10.1093/sysbio/sys029.
  41. Rüber, L., E. Verheyen & A. Meyer, 1999. Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proceedings of the National Academy of Sciences USA 96: 10230–10235.CrossRefGoogle Scholar
  42. Rüber, L., A. Meyer, C. Sturmbauer & E. Verheyen, 2001. Population structure in two sympatric species of the Lake Tanganyika cichlid tribe Eretmodini: evidence for introgression. Molecular Ecology 10: 1207–1225.PubMedCrossRefGoogle Scholar
  43. Salzburger, W., A. Meyer, S. Baric, E. Verheyen & C. Sturmbauer, 2002. Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the central and East African haplochromine cichlid fish faunas. Systematic Biology 51: 113–135.PubMedCrossRefGoogle Scholar
  44. Schmidt, H. A., K. Strimmer, M. Vingron & A. von Haeseler, 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502–504.PubMedCrossRefGoogle Scholar
  45. Schön, I. & K. Martens, 2003. No slave to sex. Proceedings of the Royal Society of London Series B 270: 827–833.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Schön, I. & K. Martens, 2012. Molecular analyses of ostracod flocks from Lake Baikal and Lake Tanganyika. Hydrobiologia 682: 91–110.CrossRefGoogle Scholar
  47. Schön, I., R. K. Butlin, H. I. Griffiths & K. Martens, 1998. Slow molecular evolution in an ancient asexual ostracod. Proceedings of the Royal Society of London Series B 265: 235–242.CrossRefGoogle Scholar
  48. Schön, I., K. Martens, K. Van Doninck & R. K. Butlin, 2003. Evolution in the slow lane: molecular rates of evolution in sexual and asexual ostracods (Crustacea: Ostracoda). Biological Journal of the Linnean Society 79: 93–100.CrossRefGoogle Scholar
  49. Schön, I., K. Martens & S. Halse, 2010. Genetic diversity in Australian ancient asexual Vestalenula (Ostracoda, Darwinulidae) – little variability down-under. Hydrobiologia 641: 59–70.CrossRefGoogle Scholar
  50. Schön, I., R. Pinto, S. Halse, A. Smith, K. Martens & C. W. Birky Jr., 2012. Cryptic diversity in putative ancient asexual darwinulids (Crustacea: Ostracoda). PLoS ONE 7: e39844.Google Scholar
  51. Schwarzer, J., E. E. Swartz, E. Vreven, J. Snoeks, F. P. D. Cotterill & U. K. Schliewen, 2012. Repeated trans watershed hybridization among haplochromine chichlids (Cichlidae) was triggered by Neogene landscape evolution. Proceedings of the Royal Academy of Science, Series B. doi: 10.1098/rspb.2012.1667.Google Scholar
  52. Sonnenberg, R., A. W. Nolte & D. Tautz, 2007. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Frontiers in Zoology 4: 6.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Sturmbauer, C., S. Baric, W. Salzburger, L. Rüber & E. Verheyen, 2001. Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Molecular Biology and Evolution 18: 144–154.PubMedCrossRefGoogle Scholar
  54. Sturmbauer, C., U. Hainz, T. S. Baric, E. Verheyen & W. Salzburger, 2003. Evolution of the tribe Tropheini from Lake Tanganyika: Synchronized explosive speciation producing multiple evolutionary parallelism. Hydrobiologia 500: 541–564.CrossRefGoogle Scholar
  55. Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512–526.PubMedGoogle Scholar
  56. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28:2731–2739.Google Scholar
  57. Tiercelin, J.-J. & A. Mondeuger, 1991. The geology of the Tanganyikan trough. In Coulter, G. W. (ed.), Lake Tanganyika and Its Life. Oxford University Press, London: 7–48.Google Scholar
  58. Trontelj, P. & C. Fiser, 2009. Cryptic species diversity should not be trivialised. Systematic Biodiversity 7: 1–3.CrossRefGoogle Scholar
  59. White, T. J., T. Bruns, S. Lee & J. Taylor, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., D. G. Gelfand, J. J. Sninsky & T. J. White (eds), PCR Protocols: A Guide to Methods and Applications. Academic Press, London: 315–322.CrossRefGoogle Scholar
  60. Wilke, T., R. Schultheiß & C. Albrecht, 2009. As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. American Malacological Bulletin 27: 25–45.CrossRefGoogle Scholar
  61. Wilson, A. B., M. Glaubrecht & A. Meyer, 2004. Ancient lakes as evolutionary reservoirs: evidence from the thalassoid gastropods of Lake Tanganyika. Proceedings of the Royal Society London, Series B 271: 529–536.CrossRefGoogle Scholar
  62. Wouters, K. 1979. Kavalacythereis braconensis gen.n.spec.n., a remarkable new cytheracean genus and species from Lake Tanganyika (Zaire). Annales de la Societé zoologique de Belgique 108 (3/4): 179–187.Google Scholar
  63. Wouters, K., 1988a. On Romecytheridea tenuisculpta (ROME). Stereo-Atlas of Ostracod Shells 15(2): 97–100.Google Scholar
  64. Wouters, K., 1988b. On Romecytheridea ampla WOUTERS sp.nov. Stereo-Atlas of Ostracod Shells, 15(2): 101-106.Google Scholar
  65. Wouters, K. & K. Martens, 1992. Contribution to the knowledge of Tanganyikan cytheraceans, with the description of Mesocyprideis nom.nov. (Crustacea, Ostracoda). Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Biologie 62: 159–166.Google Scholar
  66. Wouters, K. & K. Martens, 1994. Contribution to the knowledge of the Cyprideis species flock (Crustacea, Ostracoda) of Lake Tanganyika, with the description of three new species. Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Biologie 64: 111–128.Google Scholar
  67. Wouters, K. & K. Martens, 1999. Four new species of the Cyprideis species flock (Crustacea: Ostracoda) of Lake Tanganyika (East Africa). Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Biologie 69: 67–82.Google Scholar
  68. Wouters, K. & K. Martens, 2000. On the taxonomic position of the genera Archeocyprideis and Kavalacythereis of the Cyprideis species flock (Crustacea, Ostracoda) in Lake Tanganyika (East Africa), with the first description of the appendages. Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Biologie 70: 207–216.Google Scholar
  69. Wouters, K. & K. Martens, 2001. On the Cyprideis species flock (Crustacea, Ostracoda) in Lake Tanganyika, with the description of four new species. Hydrobiologia 450: 111–127.CrossRefGoogle Scholar
  70. Wouters, K. & K. Martens, 2007. Three new species of the Cyprideis species flock (Crustacea, Ostracoda) of Lake Tanganyika (East Africa). Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Biologie 77: 147–160.Google Scholar
  71. Wouters, K. & K. Martens, 2008. Three further new species of the Cyprideis species flock (Crustacea, Ostracoda) from Lake Tanganyika (East Africa). Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Biologie 78: 29–43.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Isa Schön
    • 1
  • Céline Poux
    • 1
    • 2
  • Erik Verheyen
    • 1
  • Koen Martens
    • 1
  1. 1.Royal Belgian Institute of Natural SciencesBrusselsBelgium
  2. 2.Laboratoire de Génétique et Évolution des Populations VégétalesUnité Mixte de Recherche 8198, Centre National de Recherche Scientifique- Université Lille1, Sciences et Technologie, Cité ScientifiqueVilleneuve ďAscqFrance

Personalised recommendations