, Volume 717, Issue 1, pp 177–187 | Cite as

Delimiting the coastal geographic background to predict potential distribution of Spartina alterniflora

  • Gengping ZhuEmail author
  • Yubao Gao
  • Lin Zhu
Primary Research Paper


Ecological niche modeling is an important tool in studying biological invasion; however, the geographic background on niche model transferability received scant attention. The salt marsh grass Spartina alterniflora, natively distributed along the eastern coasts of the Americas, is considered a global invasive species. In this study, we first compared the climate space among geographically separated populations. The classic niche model approaches involving the calibration of native range climate envelop of S. alterniflora and transferring worldwide were then used to predict potential invasion. Niche models based on two geographic backgrounds were compared, namely a large squared area delimited by a bounding box containing all known occurrences, which is usually used in former studies and a small coastal area defined as the geographic space available to the species. Both area-based models showed good performance in native range predictions, however, when models were transferred, niche model calibrated on the coastal area showed higher predictability in capturing the introduced occurrences. Given the potential substantial effect of geographic background on niche model transferability, caution is warranted when interpreting low-niche model transferability with niche differentiation and when predicting other (coastal) species’ invasion.


Coastal species Ecological niche modeling Geographic background Model transferability Niche conservatism 



Funding for this research was supported by the China Postdoctoral Science Foundation (2012M510744) award to GZ in Nankai University. Anonymous reviewers provided helpful comments on earlier versions of this manuscript.


  1. Acevedo, P., A. Jiménez-Valverde, J. M. Lobo & R. Real, 2012. Delimiting the geographical background in species distribution modeling. Journal of Biogeography 39: 1383–1390.CrossRefGoogle Scholar
  2. An, S., B. Gu, C. Zhou, Z. Wang, Z. Deng, Y. Zhi, H. Li, L. Chen, D. Yu & Y. Liu, 2007. Spartina invasion in China: implications for invasive species management and future research. Weed Research 47: 183–191.CrossRefGoogle Scholar
  3. Anderson, R. P. & A. Raza, 2010. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography 37: 1378–1393.CrossRefGoogle Scholar
  4. Anderson, R. P., D. Lew & A. T. Peterson, 2003. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling 162: 211–232.CrossRefGoogle Scholar
  5. Ba, J., Z. Hou, D. Platvoet, L. Zhu & S. Li, 2010. Is Gammarus tigrinus (Crustacea, Amphipoda) becoming cosmopolitan through shipping? Predicting its potential invasive range using ecological niche modeling. Hydrobiologia 649: 183–194.CrossRefGoogle Scholar
  6. Barve, N., V. Barve, A. Jiménez-Valverde, A. Lira-Noriega, S. P. Maher, A. T. Peterson, J. Soberón & F. Villalobos, 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222: 1810–1819.CrossRefGoogle Scholar
  7. Baumel, A., M. L. Ainouche, M. T. Misset, J. P. Gourret & R. J. Bayer, 2003. Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in South-West France: Spartina × neyrautii re-examined. Plant Systematics and Evolution 237: 87–97.CrossRefGoogle Scholar
  8. Bertness, M. D., L. Gough & S. W. Shumway, 1992. Salt tolerances and the distribution of fugitive salt marsh plants. Ecology 73: 1842–1851.CrossRefGoogle Scholar
  9. Brown, J. H., 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
  10. CABI, 2011. Invasive species compendium program. [available on internet at].
  11. Campos, J. A., M. Herrera, I. Biurrun & J. Loidi, 2004. The role of alien plants in the natural coastal vegetation in central-northern Spain. Biodiversity and Conservation 13: 2275–2293.CrossRefGoogle Scholar
  12. Chapman, V. J., 1977. Wet Coastal Ecosystems. Elsevier, New York: 1–27.Google Scholar
  13. Costa, C. S. B., J. C. Marangoni & A. M. G. Azevedo, 2003. Plant zonation in irregularly flooded salt marshes: relative importance of stress tolerance and biological interactions. Journal of Ecology 91: 951–965.CrossRefGoogle Scholar
  14. Cranford, P. J., D. C. Gordon & C. M. Jarvis, 1989. Measurement of cordgrass, Spartina alterniflora, production in a macrotidal estuary, Bay of Fundy. Estuaries 12: 27–34.CrossRefGoogle Scholar
  15. Daehler, C. C. & D. R. Strong, 1996. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biological Conservation 78: 51–58.CrossRefGoogle Scholar
  16. Daehler, C. C. & D. R. Strong, 1997. Reduced herbivore resistance in introduced smooth cordgrass (Spartina alterniflora) after a century of herbivore-free growth. Oecologia 110: 99–108.CrossRefGoogle Scholar
  17. Elith, J. & J. Leathwick, 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Reviews in Ecology, Evolution, and Systematics 40: 677–697.CrossRefGoogle Scholar
  18. Feeley, K. J. & M. R. Silman, 2011. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Diversity and Distributions 17: 1132–1140.CrossRefGoogle Scholar
  19. Furbish, C. E. & M. Albano, 1994. Selective herbivory and plant community structure in a mid-Atlantic salt marsh. Ecology 75: 1015–1022.CrossRefGoogle Scholar
  20. Goranson, C. E., C. K. Ho & S. C. Pennings, 2004. Environmental gradients and herbivores feeding preferences in coastal salt marshes. Oecologia 140: 591–600.PubMedCrossRefGoogle Scholar
  21. Grinnell, J., 1917. The niche-relationships of the California thrasher. Auk 34: 427–433.CrossRefGoogle Scholar
  22. Grinnell, J., 1924. Geography and evolution. Ecology 5: 225–229.CrossRefGoogle Scholar
  23. Guisan, A. & N. Zimmermann, 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186.CrossRefGoogle Scholar
  24. Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.CrossRefGoogle Scholar
  25. Jähnig, S. C., M. Kuemmerlen, J. Kiesel, S. Domisch, Q. Cai, B. Schmalz & N. Fohrer, 2012. Modelling of riverine ecosystems by integrating models: conceptual approach, a case study and research agenda. Journal of Biogeography 39: 2253–2263.CrossRefGoogle Scholar
  26. Jiménez-Valverde, A., A. Lira-Noriega, N. Barve, S. P. Maher, Y. Nakazawa, M. Papes, J. Soberón, J. Sukumaran & A. T. Peterson, 2011. Dominant climate influences on North American birds. Global Ecology and Biogeography 20: 114–118.CrossRefGoogle Scholar
  27. Lobo, J. M., A. Jiménez-Valverde & R. Real, 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17: 145–151.CrossRefGoogle Scholar
  28. Lythe, J. S. & T. F. Lythe, 1998. Altrazine effects on estuarine macrophytes Spartina alterniflora and Juncus roemerianus. Environmental Toxicology and Chemistry 17: 1972–1978.Google Scholar
  29. Major, W. W., C. E. Grue, J. M. Grassley & L. L. Conquest, 2003. Mechanical and chemical control of smooth cordgrass in Willapa Bay, Washington, D.C. Journal of Aquatic Plant Management 41: 6–12.Google Scholar
  30. Martínez, B., R. M. Viejo, F. Carreño & S. C. Aranda, 2012. Habitat distribution models for intertidal seaweeds: responses to climatic and non-climatic drivers. Journal of Biogeography 39: 1877–1890.CrossRefGoogle Scholar
  31. Mendelssohn, I. A. & K. L. McKee, 1988. Spartina alterniflora die-back in Louisiana: time-course investigation of soil water logging effects. Journal of Ecology 76: 509–521.CrossRefGoogle Scholar
  32. Nuñez, M. A. & K. A. Medley, 2011. Pine invasions: climate predicts invasion success; something else predicts failure. Diversity and Distributions 17: 703–713.CrossRefGoogle Scholar
  33. Pearson, R. G. & T. P. Dawson, 2003. Predicting the impacts of climate change on the distribution of species: are bioclimatic envelope models useful? Global Ecology and Biogeography 12: 361–371.CrossRefGoogle Scholar
  34. Peterson, A. T., 2003. Predicting the geography of species’ invasions via ecological niche modeling. Quarterly Review of Biology 78: 419–433.PubMedCrossRefGoogle Scholar
  35. Peterson, A. T., 2011. Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography 38: 817–828.CrossRefGoogle Scholar
  36. Peterson, A. T. & Y. Nakazawa, 2008. Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography 17: 135–144.Google Scholar
  37. Peterson, A. T. & J. Soberón, 2012. Integrating fundamental concepts of ecology, biogeography, and sampling into effective ecological niche modeling and species distribution modeling. Plant Biosystems 146: 789–796.Google Scholar
  38. Peterson, A. T., J. Soberón & V. Sánchez-Cordero, 1999. Conservatism of ecological niches in evolutionary time. Science 285: 1265–1267.PubMedCrossRefGoogle Scholar
  39. Peterson, A. T., J. Soberón, R. P. Anderson, R. G. Pearson, E. Martínez-Meyer, M. Nakamura & M. B. Araujo, 2011. Ecological Niches and Geographic Distributions: a Modeling Perspective. Princeton University Press, Princeton, NJ, USA.Google Scholar
  40. Phillips, S. J. & M. Dudik, 2008. Modelling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161–175.CrossRefGoogle Scholar
  41. Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259.CrossRefGoogle Scholar
  42. Rangel, T. F., J. A. F. Diniz-Filho & L. M. Bini, 2006. Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography 15: 321–327.CrossRefGoogle Scholar
  43. Ranwell, D. S. & B. M. Downing, 1960. The use of dalapon and substituted urea herbicides for control of seed bearing Spartina (cordgrass) in intertidal zones of estuarine marsh. Weeds 8: 78–88.CrossRefGoogle Scholar
  44. Rödder, D. & S. Lötters, 2009. Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). Global Ecology and Biogeography 18: 674–687.CrossRefGoogle Scholar
  45. Rödder, D., S. Schmidtlein, M. Veith & S. Lötters, 2009. Alien invasive slider turtle in unpredicted habitat: a matter of niche shift or of predictors studied? PLoS One 4: e7843.PubMedCrossRefGoogle Scholar
  46. Sánchez-Fernández, D., J. M. Lobo & O. L. Hernández-Manrique, 2011. Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles. Diversity and Distributions 17: 163–171.CrossRefGoogle Scholar
  47. Silliman, B. R. & J. C. Zieman, 2001. Top-down control of Spartina alterniflora production by periwinkle grazing in a Virginia salt marsh. Ecology 82: 2830–2845.Google Scholar
  48. Soberón, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10: 1115–1123.PubMedCrossRefGoogle Scholar
  49. Soberón, J., 2010. Niche and area of distribution modeling: a population ecology perspective. Ecography 33: 159–167.CrossRefGoogle Scholar
  50. Soberón, J. & A. T. Peterson, 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2: 1–10.Google Scholar
  51. Stockwell, D. R. B. & I. R. Noble, 1992. Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Mathematics and Computers in Simulation 33: 385–390.CrossRefGoogle Scholar
  52. Stockwell, D. R. B. & D. Peters, 1999. The GARP modeling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science 13: 143–158.CrossRefGoogle Scholar
  53. Swets, J. A., 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293.PubMedCrossRefGoogle Scholar
  54. Thuiller, W., D. M. Richardson, P. Pysek, G. F. Midgley, G. O. Hughes & M. Rouget, 2005. Niche-based modeling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology 11: 2234–2250.CrossRefGoogle Scholar
  55. Turner, M. G., 1987. Effects of grazing by feral horses, clipping, trampling and burning in a Georgia salt marsh. Estuaries 10: 54–60.CrossRefGoogle Scholar
  56. USDA–GRIN (Germplasm Resources Information Network), 2005. Spartina alterniflora. National genetic resources program [online database] National Germplasm Resources Laboratory, Beltsville, MD, USA.Google Scholar
  57. Václavík, T. & R. K. Meentemeyer, 2012. Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions 18: 73–83.CrossRefGoogle Scholar
  58. Wang Q., S. Q. An, Z. J. Ma, B. Zhao, J. A. Chen, B. Li, 2006. Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxonomica Sinica 44: 559–588.Google Scholar
  59. Warren, D. L., R. E. Glor & M. Turelli, 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 2868–2883.PubMedCrossRefGoogle Scholar
  60. Zhang, Y., G. Huang, W. Wang, L. Chen & G. Lin, 2012. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology 93: 588–597.PubMedCrossRefGoogle Scholar
  61. Zhu, G., W. Bu, Y. Gao & G. Liu, 2012a. Potential geographic distribution of Brown Marmorated Stink Bug invasion (Halyomorpha halys). PLoS One 7: e31246.PubMedCrossRefGoogle Scholar
  62. Zhu, G., M. J. Petersen & W. Bu, 2012b. Selecting biological meaningful environmental dimensions of low discrepancy among ranges to predict potential distribution of bean plataspid invasion. PLoS One 7: e46247.PubMedCrossRefGoogle Scholar
  63. Zimmermann, N. E., N. G. Yoccoz, T. C. Edwards, J. E. S. Meier, W. Thuiller, A. Guisan, D. R. Schmatz & P. B. Pearman, 2009. Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences 106: 19723–19728.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of Environmental Science and EngineeringNankai UniversityTianjinChina
  2. 2.College of Life SciencesNankai UniversityTianjinChina

Personalised recommendations