Advertisement

Hydrobiologia

, Volume 716, Issue 1, pp 163–176 | Cite as

Environmental factors shaping the distribution of common wintering waterbirds in a lake ecosystem with developed shoreline

  • Katalin Pap
  • Lajos Nagy
  • Csilla Balogh
  • László G -Tóth
  • András Liker
Primary Research Paper

Abstract

In this study, we tested whether the spatial distribution of waterbirds is influenced by shoreline urbanization or other habitat characteristics. We conducted monthly censuses along shoreline sections of a continental lake (Lake Balaton, Hungary) to assess the abundance of 11 common species that use this lake as a feeding and staging area during migration and winter. We estimated the degree of urbanization of the same shoreline sections and also measured other habitat characteristics (water depth, extent of reed cover, biomass of zebra mussels, distances to waste dumps and to other wetlands). We applied linear models and model averaging to identify habitat variables with high relative importance for predicting bird distributions. Bird abundance and urbanization were strongly related only in one species. Other habitat variables exhibited stronger relationships with bird distribution: (1) diving ducks and coots preferred shoreline sections with high zebra mussel biomass, (2) gulls preferred sites close to waste dumps, and (3) the abundances of several species were higher on shoreline sections close to other wetlands. Our findings suggest that the distribution of waterbirds on Lake Balaton is largely independent of shoreline urbanization and influenced by food availability and connectivity between wetlands.

Keywords

Shoreline development Waterbird abundance Habitat use Mussel biomass Wetland connectivity Model averaging 

Notes

Acknowledgments

The comments of two anonymous reviewers, furthermore Á. Gyimesi’s and Zs. Végvári’s suggestions on the earlier version of this manuscript significantly improved the quality of this article. T. Hegyi (Warrant Officer and the Hungarian Defence Forces, Joint Force Command) kindly provided the equipment and assistance for distance measuring. The Central Transdanubian Environmental and Water Authority let us use the aerial photographs. M. Golding reviewed the language of this manuscript. A. Liker was supported by a Marie Curie Intra-European Fellowship.

Supplementary material

10750_2013_1560_MOESM1_ESM.doc (358 kb)
Supplementary material 1 (DOC 358 kb)

References

  1. Airoldi, L. & M. W. Beck, 2007. Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology 45: 345–405.Google Scholar
  2. Balogh, C., I. B. Muskó, G. T. Laszló & L. Nagy, 2008. Quantitative trends of zebra mussels in Lake Balaton (Hungary) in 2003–2005 at different water levels. Hydrobiologia 613: 57–69.CrossRefGoogle Scholar
  3. Bartoń, K., 2012. MuMIn: Multi-model Inference. R Package Version 1.7.2. http://CRAN.R-project.org/package=MuMIn.
  4. Belant, J. L., S. K. Ickes & T. W. Seamans, 1998. Importance of landfills to urban-nesting herring and ring-billed gulls. Landscape and Urban Planning 43: 11–19.CrossRefGoogle Scholar
  5. BirdLife International., 2009. Important Bird Area Factsheet. Lake Balaton, Hungary. http://www.birdlife.org/datazone/sitefactsheet.php?id=1412. Accessed on 27 September 2010.
  6. Bókony, V., A. Kulcsár & A. Liker, 2010. Does urbanization select for weak competitors in house sparrows? Oikos 119: 437–444.CrossRefGoogle Scholar
  7. Brinson, M. M. & A. I. Malvarez, 2002. Temperate freshwater wetlands: types, status, and threats. Environmental Conservation 29: 115–133.CrossRefGoogle Scholar
  8. Brzezinski, M., N. Magdalena, A. Zalewski & M. Zmihorski, 2012. Numerical and behavioral responses of waterfowl to the invasive American mink: a conservation paradox. Biological Conservation 147: 68–78.CrossRefGoogle Scholar
  9. Buday-Sántha, A., 2007. A Balaton régió fejlesztése – Development Issues of the Balaton Region. Saldo Publisher, Budapest.Google Scholar
  10. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodal Inference a Practical Information-Theoretic Approach. Springer, New York.Google Scholar
  11. Burnham, K. P., D. R. Anderson & K. P. Huyvaert, 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65: 23–35.CrossRefGoogle Scholar
  12. Campbell, M. O., 2008. The impact of vegetation, river, and urban features on waterbird ecology in Glasgow, Scotland. Journal of Coastal Research 4: 239–245.CrossRefGoogle Scholar
  13. DeLuca, W. V., C. E. Studds, L. L. Rockwood & P. P. Marra, 2004. Influence of land use on the integrity of marsh bird communities of Chesapeake Bay, USA. Wetlands 24: 837–847.CrossRefGoogle Scholar
  14. DeStefano, S. & R. M. DeGraaf, 2003. Exploring the ecology of suburban wildlife. Frontiers in Ecology and the Environment 1: 95–101.CrossRefGoogle Scholar
  15. Fraterrigo, J. M. & J. A. Wiens, 2005. Bird communities of the Colorado Rocky Mountains along a gradient of exurban development. Landscape and Urban Planning 71: 263–275.Google Scholar
  16. Getachew, M., A. Ambelu, S. Tiku, W. Legesse, A. Adugna & H. Kloos, 2012. Ecological assessment of Cheffa Wetland in the Borkena Valley, northeast Ethiopia: macroinvertebrate and bird communities. Ecological Indicators 15: 63–71.CrossRefGoogle Scholar
  17. Gill, J. A. & W. J. Sutherland, 2000. Predicting the Consequences of Human Disturbance from Behavioural Decisions. Cambridge University Press, Cambridge.Google Scholar
  18. Gregory, R. D., D. W. Gibbons & P. F. Donald, 2004. Bird census and survey techniques. In Sutherland, W. J., I. Newton & R. E. Green (eds), Bird Ecology and Conservation: A Handbook of Techniques. Cambridge University Press, Cambridge.Google Scholar
  19. Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. G. Wu, X. M. Bai & J. M. Briggs, 2008. Global change and the ecology of cities. Science 319: 756–760.PubMedCrossRefGoogle Scholar
  20. Hegyi, G. & L. Z. Garamszegi, 2011. Using information theory as a substitute for stepwise regression in ecology and behavior. Behavioral Ecology and Sociobiology 65: 69–76.CrossRefGoogle Scholar
  21. Herodek, S., V. Tóth, A. Zlinszky & V. Lukács, 2009. Mitől pusztulnak a nádasok? In Bíró, P. (ed.), Balaton-kutatásról mindenkinek. Balaton Limnological Research Institute, Tihany.Google Scholar
  22. Keatley, B. E., E. M. Bennett, G. K. MacDonald, Z. E. Taranu & I. Gregory-Eaves, 2011. Land-use legacies are important determinants of lake eutrophication in the anthropocene. Plos One 6: 7.CrossRefGoogle Scholar
  23. Laursen, K., J. Kahlert & J. Frikke, 2005. Factors affecting escape distances of staging waterbirds. Wildlife Biology 11: 13–19.CrossRefGoogle Scholar
  24. Liker, A. & L. Nagy, 2009. Migration of mallards Anas platyrhynchos in Hungary: migration phenology, the origin of migrants, and long-term changes. Ringing & Migration 24: 259–265.CrossRefGoogle Scholar
  25. Liker, A., Z. Papp, V. Bókony & Á. Z. Lendvai, 2008. Lean birds in the city: body size and condition of house sparrows along the urbanization gradient. Journal of Animal Ecology 77: 789–795.PubMedCrossRefGoogle Scholar
  26. Liu, J. G., G. C. Daily, P. R. Ehrlich & G. W. Luck, 2003. Effects of household dynamics on resource consumption and biodiversity. Nature 421: 530–533.PubMedCrossRefGoogle Scholar
  27. Mitsch, W. J. & J. G. Gosselink, 2000. Wetlands. Wiley, New York, xiii, 920 pp.Google Scholar
  28. Nagy, L., 2007. Ramsar Information Sheet. http://ramsar.wetlands.org/Database/Searchforsites/tabid/765/language/en-US/Default.aspx. Accessed on 27 September 2010.
  29. Padisák, J., G. Molnár, É. Soróczki-Pintér, É. Hajnal & G. D. Glen, 2006. Four consecutive dry years in Lake Balaton (Hungary): consequences for phytoplankton biomass and composition. Verhandlungen der Internationale Vereinigung für Limnologie 29: 1153–1159.Google Scholar
  30. Paracuellos, M. & J. L. Telleria, 2004. Factors affecting the distribution of a waterbird community: the role of habitat configuration and bird abundance. Waterbirds 27: 446–453.CrossRefGoogle Scholar
  31. Pearce, C. M., M. B. Green & M. R. Baldwin, 2007. Developing habitat models for waterbirds in urban wetlands: a log-linear approach. Urban Ecosystems 10: 239–254.CrossRefGoogle Scholar
  32. Pónyi, J. E., 1994. Abundance and feeding of wintering and migrating aquatic birds in 2 sampling areas of Lake Balaton in 1983–1985. Hydrobiologia 280: 63–69.CrossRefGoogle Scholar
  33. R Development Core Team. 2011. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
  34. Rosenthal, R., 1991. Meta-Analytic Procedures for Social Research. Sage Publications, Newbury Park.Google Scholar
  35. Rutz, C., 2008. The establishment of an urban bird population. Journal of Animal Ecology 77: 1008–1019.PubMedCrossRefGoogle Scholar
  36. Severcan, Ç. & E. Yamaç, 2010. The effects of flock size and human presence on vigilance and feeding behavior in the Eurasian Coot (Fulica atra L.) during breeding season. Acta Ethologica 14: 51–56.CrossRefGoogle Scholar
  37. Smith, L. A. & P. Chow-Fraser, 2010. Impacts of adjacent land use and isolation on marsh bird communities. Environmental Management 45: 1040–1051.PubMedCrossRefGoogle Scholar
  38. Sorace, A., 2002. High density of bird and pest species in urban habitats and the role of predator abundance. Ornis Fennica 79: 60–71.Google Scholar
  39. Studds, C. E., W. V. DeLuca, M. E. Baker, R. S. King & P. P. Marra, 2012. Land cover and rainfall interact to shape waterbird community composition. PLoS One 6: 1–7.Google Scholar
  40. Symonds, M. R. E. & A. Moussalli, 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology 65: 13–21.CrossRefGoogle Scholar
  41. Tátrai, I., V. Istvánovics, L. G. Tóth & I. Kóbor, 2008. Management measures and long-term, water quality changes in Lake Balaton (Hungary). Fundamental and Applied Limnology 172: 1–11.CrossRefGoogle Scholar
  42. Traut, A. H. & M. E. Hostetler, 2004. Urban lakes and waterbirds: effects of shoreline development on avian distribution. Landscape and Urban Planning 69: 69–85.CrossRefGoogle Scholar
  43. Wei, A. & P. Chow-Fraser, 2005. Untangling the confounding effects of urbanization and high water level on the cover of emergent vegetation in Cootes Paradise Marsh, a degraded coastal wetland of Lake Ontario. Hydrobiologia 544: 1–9.CrossRefGoogle Scholar
  44. Werner, S., M. Mortl, H. G. Bauer & K. O. Rothhaupt, 2005. Strong impact of wintering waterbirds on zebra mussel (Dreissena polymorpha) populations at Lake Constance, Germany. Freshwater Biology 50: 1412–1426.CrossRefGoogle Scholar
  45. Zlinszky, A., G. Molnár & S. Herodek, 2008. A Balaton medrének digitális geomorfológiai vizsgálata. Translated title: Digital analyses of the geomorphology of the Lake Balaton. Hidrológiai Közlöny 88: 239–241.Google Scholar
  46. Zuur, A. F., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Katalin Pap
    • 1
  • Lajos Nagy
    • 2
  • Csilla Balogh
    • 3
  • László G -Tóth
    • 3
    • 4
  • András Liker
    • 1
    • 5
  1. 1.Department of LimnologyUniversity of PannoniaVeszprémHungary
  2. 2.Balaton Uplands National Park DirectorateCsopakHungary
  3. 3.Balaton Limnological Research InstituteTihanyHungary
  4. 4.Institute of Regional Economics and Rural Development, Faculty of Economics and Social SciencesSzent István UniversityGödöllőHungary
  5. 5.Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK

Personalised recommendations