Advertisement

Hydrobiologia

, Volume 729, Issue 1, pp 133–142 | Cite as

Disentangling and ranking the influences of multiple environmental factors on plant and soil-dwelling arthropod assemblages in a river Rhine floodplain area

  • Aafke M. SchipperEmail author
  • A. Jan Hendriks
  • Ad M. J. Ragas
  • Rob S. E. W. Leuven
WORLD’S LARGE RIVERS CONFERENCE

Abstract

Floodplains of large rivers are among the most dynamic and diverse, yet most threatened ecosystems on earth. For a solid underpinning of river conservation and rehabilitation measures, it is critical to unravel the influences of the multiple stressors affecting floodplain ecosystems. Using canonical correspondence analysis with variance partitioning, we disentangled and ranked the influences of three floodplain ecosystem stressors (land use, flooding and soil contamination) on terrestrial plant and soil-dwelling arthropod assemblages in a floodplain area along the river Rhine in The Netherlands. We included five biotic assemblages: plant species (73 taxa), ground beetle species (57 taxa), ground beetle genera (29 taxa), beetle families (32 taxa) and arthropod groups at taxonomic levels from family to class (10 taxa). Plant and arthropod assemblages were primarily related to land use, which explained 19–30% of the variation in taxonomic composition. For plant species composition, flooding characteristics were nearly as important as land use. Soil metal contamination constituted a subordinate explanatory factor for the plant assemblages only (3% of variation explained). We conclude that the taxonomic composition of terrestrial plant and arthropod assemblages in our study area is related to land use and flooding rather than soil metal contamination.

Keywords

Carabidae Coleoptera Canonical correspondence analysis (CCA) Flooding Land use Metal contamination Variance partitioning Vegetation 

Notes

Acknowledgements

We would like to thank Marten Geertsma and Kim Lotterman for identifying the plant and arthropod taxa. Four anonymous reviewers provided suggestions to improve our work. This research project was funded by the Netherlands Organisation for Scientific Research (NWO) within the LOICZ programme (project 014.27.007).

Supplementary material

10750_2013_1521_MOESM1_ESM.doc (650 kb)
Supplementary material 1 (DOC 649 kb)

References

  1. Barkman, J. J., H. Doing & S. Segal, 1964. Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Botanica Neerlandica 13: 394–419.CrossRefGoogle Scholar
  2. Bayley, S. E. & J. K. Guimond, 2008. Effects of river connectivity on marsh vegetation community structure and species richness in montane floodplain wetlands in Jasper National Park, Alberta, Canada. Ecoscience 15: 377–388.CrossRefGoogle Scholar
  3. Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.PubMedCrossRefGoogle Scholar
  4. Bonn, A., K. Hagen & D. Wohlgemuth-von Reiche, 2002. The significance of flood regimes for carabid beetle and spider communities in riparian habitats—a comparison of three major rivers in Germany. River Research and Applications 18: 43–64.CrossRefGoogle Scholar
  5. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  6. Cabezas, A., F. A. Comín, S. Beguería & M. Trabucchi, 2009. Hydrologic and landscape changes in the Middle Ebro River (NE Spain): implications for restoration and management. Hydrology and Earth System Sciences 13: 273–284.CrossRefGoogle Scholar
  7. Cohen, J. E. & C. Small, 1998. Hypsographic demography: the distribution of human population by altitude. Proceedings of the National Academy of Sciences of the United States of America 95: 14009–14014.PubMedCentralPubMedCrossRefGoogle Scholar
  8. De Jonge, J., J. M. Brils, A. J. Hendriks & W. C. Ma, 1999. Ecological and ecotoxicological surveys of moderately contaminated floodplain ecosystems in the Netherlands. Aquatic Ecosystem Health and Management 2: 9–18.CrossRefGoogle Scholar
  9. Field, A., 2005. Discovering Statistics Using SPSS. 2nd ed. Sage Publications, London.Google Scholar
  10. Freedman, L. S., D. Pee & D. N. Midthune, 1992. The problem of underestimating the residual error variance in forward stepwise regression. Statistician 41: 405–412.CrossRefGoogle Scholar
  11. Garcia, R. R., F. J. Ocharan, B. M. Jauregui, U. Garcia, K. Osoro & R. Celaya, 2010. Ground-dwelling arthropod communities present in three types of Cantabrian (NW Spain) heathland grazed by sheep or goats. European Journal of Entomology 107: 219–227.CrossRefGoogle Scholar
  12. Hendriks, A. J., W. C. Ma, J. J. Brouns, E. M. De Ruiter-Dijkman & R. Gast, 1995. Modeling and monitoring organochlorine and heavy metal accumulation in soils, earthworms, and shrews in Rhine-delta floodplains. Archives of Environmental Contamination and Toxicology 29: 115–127.PubMedCrossRefGoogle Scholar
  13. Hobbelen, P. H. F., J. E. Koolhaas & C. A. M. Van Gestel, 2004. Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, the Netherlands, taking bioavailability into account. Environmental Pollution 129: 409–419.PubMedCrossRefGoogle Scholar
  14. Hobbelen, P. H. F., P. J. Van den Brink, J. F. Hobbelen & C. A. M. Van Gestel, 2006. Effects of heavy metals on the structure and functioning of detritivore communities in a contaminated floodplain area. Soil Biology & Biochemistry 38: 1596–1607.CrossRefGoogle Scholar
  15. Jansson, R., C. Nilsson & B. Renöfält, 2000. Fragmentation of riparian floras in rivers with multiple dams. Ecology 81: 899–903.CrossRefGoogle Scholar
  16. Kashem, M. A. & B. R. Singh, 2001. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutrient Cycling in Agroecosystems 61: 247–255.CrossRefGoogle Scholar
  17. Klok, C., P. W. Goedhart & B. Vandecasteele, 2007. Field effects of pollutants in dynamic environments. A case study on earthworm populations in river floodplains contaminated with heavy metals. Environmental Pollution 147: 26–31.PubMedCrossRefGoogle Scholar
  18. Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge.Google Scholar
  19. Leuven, R. S. E. W., S. Wijnhoven, L. Kooistra, R. J. W. De Nooij & M. A. J. Huibregts, 2005. Toxicological constraints for rehabilitation of riverine habitats: a case study for metal contamination of floodplain soils along the Rhine. Archiv für Hydrobiologie 155: 657–676.Google Scholar
  20. Loos, M., A. M. J. Ragas, R. Plasmeijer, A. M. Schipper & A. J. Hendriks, 2010. Eco-SpaCE: an object-oriented, spatially explicit model to assess the risk of multiple environmental stressors on terrestrial vertebrate populations. Science of the Total Environment 408: 3908–3917.PubMedCrossRefGoogle Scholar
  21. Ma, W. C., P. W. Van Vliet & J. Bodt, 2004. Multistress van verontreiniging en hydrodynamiek op populaties van Oligochaeta in de uiterwaarden. Wageningen, Alterra.Google Scholar
  22. Middelkoop, H., 2000. Heavy-metal pollution of the river Rhine and Meuse floodplains in the Netherlands. Netherlands Journal of Geosciences 79: 411–428.Google Scholar
  23. Moran, J., M. Gormally & M. S. Skeffington, 2012. Turlough ground beetle communities: the influence of hydrology and grazing in a complex ecological matrix. Journal of Insect Conservation 16: 51–69.CrossRefGoogle Scholar
  24. Nienhuis, P. H., A. D. Buijse, R. Leuven, A. J. M. Smits, R. J. W. De Nooij & E. M. Samborska, 2002. Ecological rehabilitation of the lowland basin of the river Rhine (NW Europe). Hydrobiologia 478: 53–72.CrossRefGoogle Scholar
  25. Notten, M. J. M., A. J. P. Oosthoek, J. Rozema & R. Aerts, 2005. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Environmental Pollution 138: 178–190.PubMedCrossRefGoogle Scholar
  26. Økland, R. H., 1999. On the variation explained by ordination and constrained ordination axes. Journal of Vegetation Science 10: 131–136.CrossRefGoogle Scholar
  27. Økland, R. H. & O. Eilertsen, 1994. Canonical Correspondence Analysis with variation partitioning: some comments and an application. Journal of Vegetation Science 5: 117–126.CrossRefGoogle Scholar
  28. Peeters, E., R. Gylstra & J. H. Vos, 2004. Benthic macroinvertebrate community structure in relation to food and environmental variables. Hydrobiologia 519: 103–115.CrossRefGoogle Scholar
  29. Pribyl, D. W., 2010. A critical review of the conventional SOC to SOM conversion factor. Geoderma 156: 75–83.CrossRefGoogle Scholar
  30. Rozema, J., M. J. M. Notten, R. Aerts, C. A. M. Van Gestel, P. H. F. Hobbelen & T. H. M. Hamers, 2008. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems? Science of the Total Environment 406: 443–448.PubMedCrossRefGoogle Scholar
  31. Sauvé, S., W. Hendershot & H. E. Allen, 2000. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environmental Science and Technology 34: 1125–1131.CrossRefGoogle Scholar
  32. Schaffers, A. P., I. P. Raemakers, K. V. Sykora & C. J. F. Ter Braak, 2008. Arthropod assemblages are best predicted by plant species composition. Ecology 89: 782–794.PubMedCrossRefGoogle Scholar
  33. Schipper, A. M., K. Lotterman, M. Geertsma, R. S. E. W. Leuven & A. J. Hendriks, 2010. Using datasets of different taxonomic detail to assess the influence of floodplain characteristics on terrestrial arthropod assemblages. Biodiversity and Conservation 19: 2087–2110.CrossRefGoogle Scholar
  34. Schipper, A. M., K. Lotterman, R. S. E. W. Leuven, A. M. J. Ragas, H. De Kroon & A. J. Hendriks, 2011. Plant communities in relation to flooding and soil contamination in a lowland Rhine River floodplain. Environmental Pollution 159: 182–189.PubMedCrossRefGoogle Scholar
  35. Schipper, A. M., S. Wijnhoven, H. Baveco & N. W. Van den Brink, 2012. Contaminant exposure in relation to spatio-temporal variation in diet composition: a case study of the little owl (Athene noctua). Environmental Pollution 163: 109–116.PubMedCrossRefGoogle Scholar
  36. Schipper, A. M., S. Wijnhoven, R. S. E. W. Leuven, A. M. J. Ragas & A. J. Hendriks, 2008. Spatial distribution and internal metal concentrations of terrestrial arthropods in a moderately contaminated lowland floodplain along the Rhine River. Environmental Pollution 151: 17–26.PubMedCrossRefGoogle Scholar
  37. Silvertown, J., M. E. Dodd, D. J. G. Gowing & J. O. Mountford, 1999. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400: 61–63.CrossRefGoogle Scholar
  38. Song, J. F., J. Zhao, S. P. McGrath & Y. M. Luo, 2006. Influence of soil properties and aging on arsenic phytotoxicity. Environmental Toxicology and Chemistry 25: 1663–1670.PubMedCrossRefGoogle Scholar
  39. Stanford, J. A., J. V. Ward, W. J. Liss, C. A. Frissell, R. N. Williams, J. A. Lichatowich & C. C. Coutant, 1996. A general protocol for restoration of regulated rivers. Regulated Rivers: Research & Management 12: 391–413.CrossRefGoogle Scholar
  40. Stoner, K. J. L. & A. Joern, 2004. Landscape vs. local habitat scale influences to insect communities from tallgrass prairie remnants. Ecological Applications 14: 1306–1320.CrossRefGoogle Scholar
  41. Sýkora, K. V., E. Scheper & F. Van der Zee, 1988. Inundation and the distribution of plant communities on Dutch river dikes. Acta Botanica Neerlandica 37: 279–290.Google Scholar
  42. Sýkora, K. V., G. Van der Krogt & J. Rademakers, 1990. Vegetation change on embankments in the south-western part of The Netherlands under the influence of different management practices (in particular sheep grazing). Biological Conservation 52: 49–81.CrossRefGoogle Scholar
  43. Ter Braak, C. J. F., 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Plant Ecology 69: 69–77.CrossRefGoogle Scholar
  44. Ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY.Google Scholar
  45. Ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 255–289.CrossRefGoogle Scholar
  46. Tockner, K. & J. A. Stanford, 2002. Riverine flood plains: present state and future trends. Environmental Conservation 29: 308–330.CrossRefGoogle Scholar
  47. Tockner, K., M. Pusch, D. Borchardt & M. S. Lorang, 2010. Multiple stressors in coupled river-floodplain ecosystems. Freshwater Biology 55: 135–151.CrossRefGoogle Scholar
  48. Van den Brink, N. W., N. M. Groen, J. De Jonge & A. T. C. Bosveld, 2003. Ecotoxicological suitability of floodplain habitats in The Netherlands for the little owl (Athene noctua vidalli). Environmental Pollution 122: 127–134.PubMedCrossRefGoogle Scholar
  49. Van Eck, W. H. J. M., H. M. Van de Steeg, C. W. P. M. Blom & H. De Kroon, 2004. Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species. Oikos 107: 393–405.CrossRefGoogle Scholar
  50. Van Griethuysen, C., J. Van Baren, E. Peeters & A. A. Koelmans, 2004. Trace metal availability and effects on benthic community structure in floodplain lakes. Environmental Toxicology & Chemistry 23: 668–681.CrossRefGoogle Scholar
  51. Volis, S., M. Dorman, M. Blecher, Y. Sapir & L. Burdeniy, 2011. Variation partitioning in canonical ordination reveals no effect of soil but an effect of co-occurring species on translocation success in Iris atrofusca. Journal of Applied Ecology 48: 265–273.CrossRefGoogle Scholar
  52. Ward, J. V., K. Tockner & F. Schiemer, 1999. Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research and Management 15: 125–139.CrossRefGoogle Scholar
  53. Wiser, S. K. & R. P. Buxton, 2008. Context matters: matrix vegetation influences native and exotic species composition on habitat islands. Ecology 89: 380–391.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Aafke M. Schipper
    • 1
    Email author
  • A. Jan Hendriks
    • 1
  • Ad M. J. Ragas
    • 1
  • Rob S. E. W. Leuven
    • 1
  1. 1.Department of Environmental Science, Institute for Water and Wetland ResearchRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations