, Volume 725, Issue 1, pp 57–68 | Cite as

The São Paulo shelf (SE Brazil) as a nursery ground for Doryteuthis plei (Blainville, 1823) (Cephalopoda, Loliginidae) paralarvae: a Lagrangian particle-tracking Individual-Based Model approach

  • Rodrigo Silvestre MartinsEmail author
  • Ricardo de Camargo
  • Maria A. Gasalla


The São Paulo shelf ranges from ~23°S to 25°S, comprising nearly 622 km of shoreline. This region sustains historical landings of the tropical arrow squid Doryteuthis plei. As in other coleoid cephalopods, the broodstock dies following spawning and the continuance of the population relies exclusively upon the survival of the paralarvae, which are very sensitive to oceanographic conditions. As a first step towards the understanding of paralarval transport, the shelf area was evaluated in terms of retention/dispersion potential. A Lagrangian particle-tracking Individual-Based Model was set up using a 3D Princeton Ocean Model model forced with in situ data obtained from July 2009 to July 2011. Neutrally buoyant particles were released every first day of every month in the model, and tracked for 30 days. The retention potential was high for particles released from the bottom all over the study area from the coast to the shelf break (200 m isobath). Offshore losses showed a marked seasonality. Regarding inshore losses, the percentage of particles beached was constant year round and smaller than offshore losses, being higher south of 24°S. Simulation results seem to agree with present knowledge of the reproductive behaviour of the species in the region.


Larval dispersal Squid Hydrodynamics Modelling SW Atlantic Retention 



This study is one of the results of the “The squid (Cephalopoda: Loliginidae) as a fishery resource on the northern coast of São Paulo: population dynamics, fisheries oceanography, and the human dimension” project funded by the FAPESP/BIOTA Program (2010/50183-6). RSM is supported by a FAPESP post-doc fellowship (2010/15978-8). We extend our gratitude to the University of São Paulo Extension Dean (PRCEX-USP 12.1.895.21.4) and FAPESP (2012/14140-6) for the financial support provided to attend the CIAC’2012 (Cephalopod International Advisory Council Symposium) in Florianópolis, where this study was presented. The help provided by Christophe Lett and Philipe Verley (Institut de recherche pour le développement—IRD, France) in the early stages of this study is fully and gratefully appreciated. Special thanks to Tito Conte (Oceanographic Institute, University of São Paulo) for his assistance with the R scripts. MAG acknowledges the CNPq (Brazilian Research Council) for the productivity grant (309732/2011-5).


  1. Agnew, J., S. Hill & J. R. Beddington, 2000. Predicting the recruitment strength of an annual squid stock: Loligo gahi around the Falkland Islands. Canadian Journal of Fisheries and Aquatic Sciences 57: 2479–2487.CrossRefGoogle Scholar
  2. Agnew, J., J. R. Beddington & S. Hill, 2002. The potential use of environmental information to manage squid stocks. Canadian Journal of Fisheries and Aquatic Sciences 59: 1851–1857.CrossRefGoogle Scholar
  3. Araújo, C. C., 2013. Oceanografia pesqueira dos estágios iniciais de Loliginidae (Cephalopoda: Myopsida): paralarvas ao longo da plataforma continental entre Cabo de São Tomé (RJ) e Cananéia (SP) (22°–25°S). MSc Dissertation, Instituto Oceanográfico, Universidade de São Paulo: 140 pp.Google Scholar
  4. Araújo, C. C., M. Katsuragawa & M. A. Gasalla, 2011. Cephalopod paralarvae off the Southeastern Brazilian Bight (22°–25°S), Southwestern Atlantic Ocean. In: 3rd Annual Larval Fish Conference (Session Cephalopod Early-life History), 3, 2011. Wilmington, North Carolina. Book of Abstracts. American Fisheries Society, Bethesda. Digital resource at
  5. Bakun, A., 1996. Patterns in the ocean: ocean processes and marine population dynamics. California Sea Grant College System, National Oceanic and Atmospheric Adminstration in cooperation with Centro de Investigaciones Biologicas del Noroeste.Google Scholar
  6. Bakun, A. & R. H. Parrish, 1990. Comparative studies of coastal pelagic fish reproductive habitats: the Brazilian sardine (Sardinella aurita). Journal du Conseil International pour l’Exploration de la Mer 46: 269–283.CrossRefGoogle Scholar
  7. Bakun, A. & R. H. Parrish, 1991. Comparative studies of coastal pelagic fish reproductive habitats: the anchovy (Engraulis anchoita) of the southwestern Atlantic. Journal du Conseil International pour l’Exploration de la Mer 48: 342–361.Google Scholar
  8. Boavida-Portugal, J., A. Moreno, L. Gordo & J. Pereira, 2010. Environmentally adjusted reproductive strategies in females of the commercially exploited common squid Loligo vulgaris. Fisheries Research 106: 193–198.CrossRefGoogle Scholar
  9. Camargo, R. & J. Harari, 2003. Modeling of the Paranagua Estuarine Complex, Brazil: tidal circulation and cotidal charts. Revista Brasileira de Oceanografia 51: 23–31.CrossRefGoogle Scholar
  10. Costa, P. A. S. & M. Haimovici, 1990. A pesca de polvos e lulas no litoral do Rio de Janeiro. Ciência e Cultura 42: 1124–1130.Google Scholar
  11. Cowen, R. K., C. B. Paris & A. Srinivasa, 2006. Scales of connectivity in marine populations. Science 311: 522–527.PubMedCrossRefGoogle Scholar
  12. Cury, P. & C. Roy, 1989. Optimal environmental window and pelagic fish recruitment success in upwelling areas. Canadian Journal of Fisheries and Aquatic Sciences 46: 670–680.CrossRefGoogle Scholar
  13. Gasalla, M. A., 2004. Women on the water? The participation of women in seagoing fishing off southeastern Brazil. ACP EU Fisheries Research Report Number, Vol. 16.Google Scholar
  14. Gasalla, M. A., F. A. Postuma & A. R. G. Tomás, 2005. Captura de lulas (Mollusca: Cephalopoda) pela pesca industrial desembarcada em Santos: comparação após 4 décadas. Brazilian Journal of Aquatic Science and Technology 9: 5–8.CrossRefGoogle Scholar
  15. Gasalla, M. A., A. R. Rodrigues & F. A. Postuma, 2010. The trophic role of the squid Loligo plei as a keystone species in the South Brazil Bight ecosystem. ICES Journal of Marine Science 67: 1413–1424.Google Scholar
  16. Gasalla, M. A., A. Migotto & R. S. Martins, 2011. First occurrence of Doryteuthis plei (Blainville, 1823) egg capsules off São Sebastião, Southeastern Brazil, and characteristics of embryos and newly-hatched paralarvae. In International Symposium Coleoid Cephalopod Through Time, Vol. 4, 2011. Stuttgart, Germany. Staaliches Museum fuer Naturkunde Stuttgart: 29–31.Google Scholar
  17. Harari, J. & R. Camargo, 2003. Numerical simulation of the tidal propagation in the coastal region of Santos (Brazil, 24°S 46°W). Continental Shelf Research 23: 1597–1613.CrossRefGoogle Scholar
  18. Hare, J. A., J. A. Quinlan, F. E. Werner, B. O. Blanton, J. J. Govoni, R. B. Forward Jr, L. R. Settle & D. E. Hoss, 1999. Larval transport during winter in the SABRE study area: results of a coupled vertical larval behaviour—three-dimensional circulation model. Fisheries Oceanography 8: 57–76.CrossRefGoogle Scholar
  19. Huggett, J. A., P. Fréon, C. Mullon & P. Penven, 2003. Modelling the transport success of anchovy Engraulis encrasicolus eggs and larvae in the southern Benguela: the effect of spatio-temporal spawning patterns. Marine Ecology Progress Series 250: 247–262.CrossRefGoogle Scholar
  20. Huret, M., P. Petitgas & M. Woillez, 2010. Dispersal kernels and their drivers captured with a hydrodynamic model and spatial indices: a case study on anchovy (Engraulis encrasicolus) early life stages in the Bay of Biscay. Progress in Oceanography 87: 6–17.CrossRefGoogle Scholar
  21. Juanicó-Rivero, M., 1979. Contribuição ao estudo da biologia dos Cephalopoda Loliginidae no Atlântico Sul Ocidental, entre Rio de Janeiro e Mar de Plata. PhD thesis, Universidade de São Paulo, São Paulo.Google Scholar
  22. Kitagawa, T., Y. Kato, M. J. Miller, Y. Sasai, H. Sasaki & S. Kimura, 2010. The restricted spawning area and season of Pacific bluefin tuna facilitate use of nursery areas: a modeling approach to larval and juvenile dispersal processes. Journal of Experimental Marine Biology and Ecology 393: 23–31.CrossRefGoogle Scholar
  23. Lett, C., A. Sakina-Dorothée, M. Huret & J.-O. Irisson, 2010. Biophysical modelling to investigate the effects of climate change on marine population dispersal and connectivity. Progress in Oceanography 87: 106–113.CrossRefGoogle Scholar
  24. Martins, R. S., 2009. Some factors influencing the transport of chokka squid (Loligo reynaudii d’Orbigny, 1839) paralarvae off the Eastern Cape, South Africa. PhD thesis, University of Cape Town, Cape Town.Google Scholar
  25. Martins, R. S. & J. A. A. Perez, 2006. Occurrence of loliginid paralarvae around Santa Catarina Island, southern Brazil. Pan-American Journal of Aquatic Sciences 1: 24–27.Google Scholar
  26. Martins, R. S. & J. A. A. Perez, 2007. The ecology of loliginid squid in shallow-waters around Santa Catarina Island, southern Brazil. Bulletin of Marine Science 80: 125–146.Google Scholar
  27. Martins, R. S., J. A. A. Perez & C. A. F. Schettini, 2006. The squid Loligo plei around Santa Catarina Island, southern Brazil: ecology and interactions with the coastal oceanographic environment. Journal of Coastal Research SI 39: 1284–1289.Google Scholar
  28. Martins, R. S., M. J. Roberts, N. Chang, P. Verley, C. L. Moloney & E. A. G. Vidal, 2010a. Effect of yolk utilization on the specific gravity of chokka squid (Loligo reynaudii) paralarvae: implications for dispersal on the Agulhas Bank, South Africa. ICES Journal of Marine Science 67: 331–344.Google Scholar
  29. Martins, R. S., M. J. Roberts, E. A. G. Vidal & C. L. Moloney, 2010b. Effects of temperature on yolk utilization in chokka squid (Loligo reynaudii d’Orbigny, 1839) paralarvae. Journal of Experimental Marine Biology and Ecology 386: 19–26.CrossRefGoogle Scholar
  30. Matsuura, Y., 1986. Contribuição ao estudo da estrutura oceanográfica da região sudeste entre Cabo Frio (RJ) e Cabo de Santa Marta Grande (SC). Ciência e Cultura 38: 1439–1450.Google Scholar
  31. Mazzini, P. L. F., 2009. Correntes subinerciais na plataforma continental interna entre Peruíbe e São Sebastião: observações. MSc dissertation, Universidade de São Paulo, São Paulo: 110 pp.Google Scholar
  32. Mellor, G. L., 1998. Three-dimensional, primitive equation, numerical ocean model. User’s Guide. Princeton University, Internal Report.Google Scholar
  33. Miller, D. C. M., C. L. Moloney, C. van der Lingen, C. Lett, C. Mullon & J. G. Field, 2006. Modelling the effects of physical–biological interactions and spatial variability in spawning and nursery areas on transport and retention of sardine Sardinops sagax eggs and larvae in the southern Benguela ecosystem. Journal of Marine Systems 61: 212–229.CrossRefGoogle Scholar
  34. Moreno, A., G. J. Pierce, M. Azevedo, J. Pereira & A. M. P. Santos, 2012. The effect of temperature on growth of early life stages of the common squid Loligo vulgaris. Journal of the Marine Biological Association of the United Kingdom 92: 1619–1628.CrossRefGoogle Scholar
  35. Mullon, C., P. Fréon, C. Parada, C. D. van der Lingen & J. A. Huggett, 2003. From particles to individuals: modelling the early stages of anchovy (Engraulis capensis/encrasicolus) in the southern Benguela. Fisheries Oceanography 12: 1–11.CrossRefGoogle Scholar
  36. NOAA, 2012. Historical El Nino/La Nina episodes (1950–present). Assessed 12 November 2012.
  37. North, E. W., Z. Schlag, R. R. Hood, M. Li, L. Zhong, T. Gross & V. S. Kennedy, 2008. Vertical swimming behavior influences the dispersal of simulated oyster larvae in a coupled particle-tracking and hydrodynamic model of Chesapeake Bay. Marine Ecology Progress Series 359: 99–115.CrossRefGoogle Scholar
  38. Parada, C., C. Mullon, C. Roy, P. Fréon, L. Hutchings & C. D. van der Lingen, 2008. Does vertical migratory behaviour retain fish larvae onshore in upwelling ecosystems? A modelling study of anchovy in the southern Benguela. African Journal of Marine Science 30: 437–452.CrossRefGoogle Scholar
  39. Perez, J. A. A., 2002. Biomass dynamics of the squid Loligo plei and the development of a small-scale seasonal fishery off southern Brazil. Bulletin of Marine Science 71: 633–651.Google Scholar
  40. Perez, J. A. A., D. C. Aguiar & U. C. Oliveira, 2002. Biology and population dynamics of the long-finned squid Loligo plei (Cephalopoda: Loliginidae) in southern Brazilian waters. Fisheries Research 58: 267–279.CrossRefGoogle Scholar
  41. Postuma, F. A. & M. A. Gasalla, 2010. On the relationship between squid and the environment: artisanal jigging for Loligo plei at São Sebastião Island (24°S), southeastern Brazil. ICES Journal of Marine Science 67: 1353–1362.Google Scholar
  42. Roberts, M. J., 2005. Chokka squid (Loligo vulgaris reynaudii) abundance linked to changes in South Africa’s Agulhas Bank ecosystem during spawning and the early life cycle. ICES Journal of Marine Science 62: 33–55.CrossRefGoogle Scholar
  43. Roberts, M. J. & C. Mullon, 2010. First Lagrangian ROMS-IBM simulations indicate large losses of chokka squid Loligo reynaudii paralarvae from South Africa’s Agulhas Bank. African Journal of Marine Science 32: 71–84.CrossRefGoogle Scholar
  44. Roberts, M. J., N. J. Downey & W. H. H. Sauer, 2012. The relative importance of shallow and deep shelf spawning habitats for the South African chokka squid (Loligo reynaudii). ICES Journal of Marine Science 69: 563–571.CrossRefGoogle Scholar
  45. Rodrigues, A. R. & M. A. Gasalla, 2008. Spatial and temporal patterns in size and maturation of Loligo plei and Loligo sanpaulensis (Cephalopoda: Loliginidae) in southeastern Brazilian waters, between 23°S and 27°S. Scientia Marina 72: 631–643.CrossRefGoogle Scholar
  46. Sakurai, Y., H. Kiyofuji, S. Saitoh, T. Goto & Y. Hiyama, 2000. Changes in inferred spawning areas of Todarodes pacificus (Cephalopoda: Ommastrephidae) due to changing environmental conditions. ICES Journal of Marine Science 57: 24–30.CrossRefGoogle Scholar
  47. Sauer, W. H. H., M. J. Smale & M. R. Lipiński, 1992. The location of spawning grounds, spawning and schooling behaviour of the squid Loligo vulgaris reynaudii (Cephalopoda: Myopsida) off the Eastern Cape Coast, South Africa. Marine Biology 114: 97–107.Google Scholar
  48. Tanaka, K., R. S. Martins & M. A. Gasalla, 2011. Evaluation of statoliths for aging juvenile squid (Doryteuthis plei, Blainville, 1823): preliminary results. 19° Simpósio de Iniciação Científica da USP (SIICUSP). Assessed 28 February 2013.
  49. Vidal, E. A. G., F. P. DiMarco, J. H. Wormuth & P. G. Lee, 2002. Influence of temperature and food availability on survival, growth and yolk utilization in hatchling squid. Bulletin of Marine Science 71: 915–931.Google Scholar
  50. Vidal, E. A. G., M. J. Roberts & R. S. Martins, 2005. Yolk utilization, metabolism and growth in reared Loligo vulgaris reynaudii paralarvae. Aquatic Living Resources 18: 385–393.CrossRefGoogle Scholar
  51. Vidal, E. A. G., L. D. Zeidberg & E. J. Buskey, 2009. Swimming behavior in fed and starved squid paralarvae. Cephalopod International Advisory Council Symposium 2009 (CIAC’09) Abstracts p. 61.Google Scholar
  52. Watson, J. R., S. Mitarai, D. A. Siegel, J. E. Caselle, C. Dong & J. C. McWilliams, 2010. Realized and potential larval connectivity in the Southern California Bight. Marine Ecology Progress Series 401: 31–48.CrossRefGoogle Scholar
  53. Yang, W. T., R. F. Hixon, P. E. Turk, M. E. Krejci, W. H. Hulet & R. T. Hanlon, 1986. Growth, behavior, and sexual reproduction of the market squid, Loligo opalescens, cultured through the life cycle. Fishery Bulletin 84: 771–798.Google Scholar
  54. Young, R. E. & R. F. Harman, 1988. “Larva”, “paralarva” and “subadult” in cephalopod terminology. Malacologia 29: 201–207.Google Scholar
  55. Zeidberg, L. D., W. M. Hamner, N. P. Nezlin & A. Henry, 2006. The fishery of the California market squid, Loligo opalescens (Cephalopoda, Myopsida), from 1981–2003. Fishery Bulletin 104: 46–59.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rodrigo Silvestre Martins
    • 1
    Email author
  • Ricardo de Camargo
    • 2
  • Maria A. Gasalla
    • 1
  1. 1.Fisheries Ecosystems Laboratory (LabPesq), Oceanographic InstituteUniversity of São PauloSão PauloBrazil
  2. 2.Institute of Astronomy, Geophysics and Atmospheric ScienceUniversity of São PauloSão PauloBrazil

Personalised recommendations