, Volume 725, Issue 1, pp 205–214 | Cite as

Evolution of development type in benthic octopuses: holobenthic or pelago-benthic ancestor?

  • C. M. Ibáñez
  • F. Peña
  • M. C. Pardo-Gandarillas
  • M. A. Méndez
  • C. E. Hernández
  • E. Poulin


Octopuses of the family Octopodidae are singular among cephalopods in their reproductive behavior, showing two major reproductive strategies: the first is the production of few and large eggs resulting in well-developed benthic hatchlings (holobenthic life history); the second strategy is the production of numerous small eggs resulting in free-swimming planktonic hatchlings (pelago-benthic life history). Here, we utilize a Bayesian-based phylogenetic comparative method using a robust molecular phylogeny of 59 octopus species to reconstruct the ancestral states of development type in benthic octopuses, through the estimation of the most recent common ancestors and the rate of gain and loss in complexity (i.e., planktonic larvae) during the evolution. We found a high probability that a free-swimming hatchling was the ancestral state in benthic octopuses, and a similar rate of gain and loss of planktonic larvae through evolution. These results suggest that in benthic octopuses the holobenthic strategy has evolved from an ancestral pelago-benthic life history. During evolution, the paralarval stage was reduced to well-developed benthic hatchlings, which supports a “larva-first” hypothesis. We propose that the origin of the holobenthic life history in benthic octopuses is associated with colonization of cold and deep sea waters.


Life history evolution Phylogenetics Octopodidae Comparative method Dollo’s law 



We thank Claudio González, Unai Markaida, Cesar Salinas, and Arminda Rebollo for their help with octopus tissue samples and Ian Gleadall for comments about octopus phylogenetic relationships.

Conflict of interest

This work was partially funded by grants to C.I. FONDECYT 3110152 and to E.P. ICM P05-002 and PFB-23. Support to M.C. Pardo-Gandarillas by a MECESUP-Chile Doctoral Fellowship is also acknowledged. Finally, F. Peña acknowledges a CONICYT Master’s Fellowship.


  1. Aljanabi, S. M. & I. Martinez, 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25: 4692–4693.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Allcock, A. L., J. M. Strugnell & M. P. Johnson, 2008. How useful are the recommended counts and indices in the systematics of the Octopodidae (Mollusca: Cephalopoda). Biological Journal of Linnean Society 95: 205–218.CrossRefGoogle Scholar
  3. Avaria-Llautureo, J., C. E. Hernández, D. Boric-Bargetto, C. B. Canales-Aguirre, B. Morales-Pallero & E. Rodríguez-Serrano, 2012. Body size evolution in extant Oryzomyini rodents: Cope’s rule or miniaturization? PLoS One 7(4): e34654.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Belcari, P., G. Tserpes, M. González, E. Lefkaditou, B. Marceta, G. Piccinetti Manfrin & A. Souplet, 2002. Distribution and abundance of Eledone cirrhosa (Lamarck, 1798) and Eledone moschata (Lamarck, 1798) (Cephalopoda: Octopoda) in the Mediterranean Sea. Scientia Marina 66: 143–155.Google Scholar
  5. Boletzky, S., 1992. Evolutionary aspects of development, life style, and reproductive mode in incirrate octopods (Mollusca, Cephalopoda). Revue Suisse De Zoologie 99: 755–770.Google Scholar
  6. Boyle, P. R. & S. V. Boletzky, 1996. Cephalopod populations: definition and dynamics. Philosophical Transactions of the Royal Society B 351: 985–1002.CrossRefGoogle Scholar
  7. Byrne, M., 2006. Life history diversity and evolution in the Asterinidae. Integrative and Comparative Biology 46: 243–254.PubMedCrossRefGoogle Scholar
  8. Carlini, D. B., R. E. Young & M. Vecchione, 2001. A molecular phylogeny of the Octopoda (Mollusca: Cephalopoda) evaluated in light of morphological evidence. Molecular Phylogenetics and Evolution 21: 338–397.CrossRefGoogle Scholar
  9. Collin, R., O. R. Chaparro, F. Winkler & D. Véliz, 2007. Molecular phylogenetic and embryological evidence that feeding larvae have been reacquired in a marine gastropod. Biological Bulletin 212: 83–92.PubMedCrossRefGoogle Scholar
  10. Collins, M. A., C. Yau, P. R. Boyle, D. Friese & U. Piatkowski, 2002. Distribution of cephalopods from plankton surveys around the British Isles. Bulletin of Marine Science 71: 239–254.Google Scholar
  11. Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.Google Scholar
  12. Duda, T. F. & S. R. Palumbi, 1999. Developmental shifts and species selection in gastropods. Proceedings of National Academy of Science United States of America 96: 10272–10277.CrossRefGoogle Scholar
  13. Felsenstein, J., 1985. Phylogenies and the comparative method. American Naturalist 125: 1–15.CrossRefGoogle Scholar
  14. Gleadall, I. G., 2004. Some old and new genera of octopus. Interdisciplinary Information Science 10: 99–112.CrossRefGoogle Scholar
  15. Goldberg, E. E. & B. Igić, 2008. On phylogenetic tests of irreversible evolution. Evolution 62: 2727–2741.PubMedCrossRefGoogle Scholar
  16. Gould, S. J., 1970. Dollo on Dollo’s Law: irreversibility and the status of evolutionary laws. Journal of the History Biology 3: 189–212.CrossRefGoogle Scholar
  17. Hanlon, R. T. & J. B. Messenger, 1996. Cephalopod behaviour. Cambridge University Press, Cambridge.Google Scholar
  18. Hart, M. W., 2000. Phylogenetic analyses of mode of larval development. Seminars in Cells and Development Biology 11: 411–418.CrossRefGoogle Scholar
  19. Hart, M. W., M. Byrne & M. J. Smith, 1997. Molecular phylogenetic analysis of life-history evolution in asterinid starfish. Evolution 51: 1848–1861.CrossRefGoogle Scholar
  20. Harvey, P. H. & M. Pagel, 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford.Google Scholar
  21. Hernández, C. E., E. Rodríguez-Serrano, J. Avaria-Llautureo, O. Inostroza-Michael, B. Morales-Pallero, D. Boric-Bargetto, C. B. Canales-Aguirre, P. A. Marquet, & A. Meade, 2013. Using phylogenetic information and the comparative method to evaluate hypotheses in macroecology. Methods in Ecology and Evolution. doi: 10.1111/2041-210X.12033.
  22. Huelsenbeck, J. P. & B. Rannala, 2004. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology 53: 904–913.PubMedCrossRefGoogle Scholar
  23. Jeffery, C. H., R. B. Emlet & D. T. J. Littlewood, 2003. Phylogeny and evolution of developmental mode in temnopleurid echinoids. Molecular Phylogenetics and Evolution 28: 99–118.PubMedCrossRefGoogle Scholar
  24. Kaneko, N., T. Kubodera & A. Iguchis, 2011. Taxonomic study of shallow-water octopuses (Cephalopoda: Octopodidae) in Japan and adjacent waters using mitochondrial genes with perspectives on Octopus DNA barcoding. Malacologia 54: 97–108.CrossRefGoogle Scholar
  25. Kass, R. E. & A. E. Raftery, 1995. Bayes factors. Journal of the American Statistical Association 90: 773–795.Google Scholar
  26. Keever, C. C. & M. W. Hart, 2008. Something for nothing? Reconstruction of ancestral character states in asterinid sea star development. Evolution and Development 10: 62–73.PubMedCrossRefGoogle Scholar
  27. Kerr, A. M., A. H. Baird & T. P. Hughes, 2011. Correlated evolution of sex and reproductive mode in corals (Anthozoa: Scleractinia). Proceedings of the Royal Society of London B 278: 75–81.CrossRefGoogle Scholar
  28. Lindgren, A. R., M. S. Pankey, F. G. Hochberg & T. H. Oakley, 2012. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evolutionary Biology 12: 129.PubMedCentralPubMedCrossRefGoogle Scholar
  29. McEdward, L. R., 1992. Morphology and development of a unique type of pelagic larva in the starfish Pteraster tesselatus (Echinodermata: Asteroidea). Biological Bulletin 182: 177–187.CrossRefGoogle Scholar
  30. McHugh, D. & G. W. Rouse, 1998. Life history evolution of marine invertebrates: new views from phylogenetic systematics. Trends in Ecology and Evolution 13: 182–186.PubMedCrossRefGoogle Scholar
  31. Meade, A., 2011. BayesTrees v. 1.3. Accessed 11 June 2012.
  32. Nesis, K. N., 2003. Distribution of recent Cephalopoda and implications for plio-pleistocene events. Berliner Paläobiologische Abhandlungen 3: 199–224.Google Scholar
  33. Nielsen, C., 2009. How did indirect development with planktotrophic larvae evolve? Biological Bulletin 216: 203–215.PubMedGoogle Scholar
  34. Norman, M. D., 2000. Cephalopods: a world guide. Conch Books, Hackenheim.Google Scholar
  35. Norman, M. D. & F. G. Hochberg, 2005. The current state of octopus taxonomy. Phuket Marine Biological Research Bulletin 66: 127–154.Google Scholar
  36. Page, L. R., 2009. Molluscan larvae: pelagic juveniles or slowly metamorphosing larvae? Biological Bulletin 216: 216–225.PubMedGoogle Scholar
  37. Pagel, M., A. Meade & D. Barker, 2004. Bayesian estimation of ancestral character states on phylogenies. Systematic Biology 53: 673–684.PubMedCrossRefGoogle Scholar
  38. Pearse, J. S., R. Mooi, S. J. Lockhart & A. Brandt, 2007. Brooding and species diversity in the Southern Ocean: selection for brooders or speciation within brooding clades? In Krupnik, I., M. A. Lang & S. E. Miller (eds), Smithsonian at the poles contributions to international polar year science. Smithsonian Institution Scholary Press, Washington: 181–196.Google Scholar
  39. Poulin, E. & J. P. Féral, 1996. Why are so many species of brooding antarctic echinoids? Evolution 50: 820–830.CrossRefGoogle Scholar
  40. Rambaut, A., & A. J. Drummond, 2009. Tracer v1.5. http// Accessed 11 June 2012.
  41. Roff, D. A., 2002. Life history evolution. Sinauer Associates, Sunderland.Google Scholar
  42. Ronquist, F., M. Teslenko, P. van der Mark, D. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 22: 539–542.CrossRefGoogle Scholar
  43. Roura, A., 2013. Ecology of planktonic cephalopod paralarvae in coastal upwelling systems. PhD thesis. Universidad de Vigo.Google Scholar
  44. Sly, B. J., M. S. Snoke & R. A. Raff, 2003. Who came first—larvae or adults? Origins of bilaterian metazoan larvae. International Journal of Developmental Biology 47: 623–632.PubMedGoogle Scholar
  45. Stearns, S. C., 1992. The evolution of life histories. Oxford University Press, Oxford.Google Scholar
  46. Stearns, S. C. & R. F. Hoekstra, 2005. Evolution, an introduction, 2nd ed. Oxford University Press, Oxford.Google Scholar
  47. Strathmann, R. R., 1993. Hypotheses on the origins of marine larvae. Annual Review of Ecology and Systematics 24: 89–117.CrossRefGoogle Scholar
  48. Strugnell, J. M., M. Norman, J. Jackson, A. J. Drummond & A. Cooper, 2005. Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Molecular Phylogenetics and Evolution 37: 426–441.PubMedCrossRefGoogle Scholar
  49. Strugnell, J., A. D. Rogers, P. A. Prodöhl, M. A. Collins & A. L. Allcock, 2008. The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24: 853–860.CrossRefGoogle Scholar
  50. Strugnell, J., Y. Cherel, I. R. Cooke, I. G. Gleadall, F. G. Hochberg, C. M. Ibáñez, E. Jorgensen, V. V. Laptikhovsky, K. Linse, M. Norman, M. Vecchione, J. R. Voight & A. L. Allcock, 2011. The Southern Ocean: source and sink? Deep-Sea Research II 58: 196–204.CrossRefGoogle Scholar
  51. Sweeney, M. J., C. F. E. Roper, K. M. Mangold, M. R. Clarke & S. V. Boletzky, 1992. “Larval” and juvenile cephalopods: a manual for their identification. Smithsonian Contributions to Zoology 513: 1–282.CrossRefGoogle Scholar
  52. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.PubMedCrossRefGoogle Scholar
  53. Villanueva, R. & M. D. Norman, 2008. Biology of the planktonic stages of benthic octopuses. Oceanography and Marine Biology Annual Review 46: 105–202.CrossRefGoogle Scholar
  54. Voight, J. R., 2009. Differences in spermatophore availability among Octopodid species (Cephalopoda: Octopoda). Malacologia 51: 143–153.CrossRefGoogle Scholar
  55. Wodinsky, J., 2008. Reversal and transfer of spermatophores by Octopus vulgaris and O. hummelincki. Marine Biology 155: 91–103.CrossRefGoogle Scholar
  56. Yang, Z. & B. Rannala, 2005. Branch-length prior influences Bayesian posterior probability of phylogeny. Systematic Biology 54: 455–470.PubMedCrossRefGoogle Scholar
  57. Young, R. E. & R. F. Harman, 1988. “Larva”, “paralarva” and “subadult” in cephalopod terminology. Malacología 29: 201–208.Google Scholar
  58. Young, R. E. & M. Vecchione, 1996. Analysis of morphology to determine primary sister-taxon relationships within coleoid cephalopods. American Malacological Bulletin 12: 91–112.Google Scholar
  59. Young, R. E., M. Vecchione & D. T. Donovan, 1998. The evolution of coleoid cephalopods and their present biodiversity and ecology. South African Journal of Marine Science 20: 393–420.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • C. M. Ibáñez
    • 1
    • 2
  • F. Peña
    • 1
  • M. C. Pardo-Gandarillas
    • 1
  • M. A. Méndez
    • 2
  • C. E. Hernández
    • 3
  • E. Poulin
    • 1
  1. 1.Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de CienciasInstituto de Ecología y Biodiversidad, Universidad de ChileÑuñoaChile
  2. 2.Laboratorio de Genética y Evolución, Departamento de Ciencias Ecológicas, Facultad de CienciasUniversidad de ChileÑuñoaChile
  3. 3.Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile

Personalised recommendations