Hydrobiologia

, Volume 725, Issue 1, pp 215–235 | Cite as

The ink sac clouds octopod evolutionary history

  • Jan M. Strugnell
  • Mark D. Norman
  • Michael Vecchione
  • Michelle Guzik
  • A. Louise Allcock
CEPHALOPOD BIOLOGY AND EVOLUTION

Abstract

Difficulties in elucidating the evolutionary history of the octopods have arisen from problems in identifying informative morphological characters. Recent classifications have divided the largest group, the incirrate octopods, into five groups. These include the pelagic superfamily Argonautoidea and three gelatinous pelagic families (Vitreledonellidae, Bolitaenidae, Amphitretidae). All benthic incirrate octopods have been accommodated in the family Octopodidae, itself divided into four subfamilies, Octopodinae, Eledoninae, Bathypolypodinae and Graneledoninae, which are defined by the presence or absence of an ink sac, and uniserial or biserial sucker arrangements on the arms. We used relaxed clock models in a Bayesian framework and maximum likelihood methods to analyse three nuclear and four mitochondrial genes of representatives from each of the previous subfamilies. Strong evidence indicates that the family Octopodidae is paraphyletic and contains the gelatinous pelagic families. The subfamilies of Octopodidae recognised in earlier works do not reflect evolutionary history. The following clades were supported in all analyses: (1) Eledone/Aphrodoctopus, (2) Callistoctopus/Grimpella/Macroctopus/Scaeurgus, (3) Abdopus/Ameloctopus/Amphioctopus/Cistopus/Hapalochlaena/Octopus, (4) Enteroctopus/Muusoctopus/Vulcanoctopus, (5) Vitreledonella/Japetella, (6) Southern Ocean endemic and deep-sea taxa with uniserial suckers. These clades form the basis for a suite of taxa assigned family taxonomic rank: Amphitretidae, Bathypolypodidae, Eledonidae, Enteroctopodidae, Megaleledonidae and Octopodidae sensu nov. They are placed within the superfamily Octopodoidea.

Keywords

Octopoda Evolution Molecular Phylogenetics 

Supplementary material

10750_2013_1517_MOESM1_ESM.doc (76 kb)
Supplementary material 1 (DOC 77 kb)
10750_2013_1517_MOESM2_ESM.doc (34 kb)
Supplementary material 2 (DOC 34 kb)
10750_2013_1517_MOESM3_ESM.doc (39 kb)
Supplementary material 3 (DOC 39 kb)

References

  1. Abascal, F., R. Zardoya & D. Posada, 2005. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105.PubMedCrossRefGoogle Scholar
  2. Adam, W. 1954. Cephalopoda. Part 3. IV—Cephalopodes l’Exclusion des genres Sepia, Sepiella et Sepioteuthis. Siboga-Expeditie LVc: 123–193.Google Scholar
  3. Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.CrossRefGoogle Scholar
  4. Allcock, A. L. & S. B. Piertney, 2002. Evolutionary relationships of Southern Ocean Octopodidae (Cephalopoda: Octopoda) and a new diagnosis of Pareledone. Marine Biology 140: 129–135.CrossRefGoogle Scholar
  5. Allcock, A. L., F. G. Hochberg & T. N. Stranks, 2003. Re-evaluation of Graneledone setebos (Cephalopoda: octopodidae) and placement in the genus Megaleledone. The Journal of the Marine Biological Association of the United Kingdom 83: 319–328.Google Scholar
  6. Allcock, A. L., J. M. Strugnell, H. Ruggiero & M. A. Collins, 2006. Redescription of the deep-sea octopod Benthoctopus normani (Massy 1907) and a description of a new species from the Northeast Atlantic. Marine Biology Research 2: 372–387.CrossRefGoogle Scholar
  7. Allcock, A. L., J. M. Strugnell, P. Prodöhl, U. Piatkowski & M. Vecchione, 2007. A new species of Pareledone (Cephalopoda: Octopodidae) from Antarctic Peninsula Waters. Polar Biology 30: 883–893.CrossRefGoogle Scholar
  8. Allcock, A. L., J. M. Strugnell & M. P. Johnson, 2008. How useful are the recommended counts and indices in the systematics of the Octopodidae (Mollusca: Cephalopoda). Biological Journal of the Linnean Society 95: 205–218.CrossRefGoogle Scholar
  9. Barker, F. K. & F. M. Lutzoni, 2002. The utility of the incongruence length difference test. Systematic Biology 51: 625–637.PubMedCrossRefGoogle Scholar
  10. Berthold, T. & T. Engeser, 1987. Phylogenetic analysis and systematization of the Cephalopoda (Mollusca). Verhandlungen des Naturwissenschaftlichen Vereins inHamburg 29: 187–220.Google Scholar
  11. Bizikov, V. A., 2004. The shell in Vampyropoda (Cephalopoda): morphology, functional role and evolution. Ruthenica 3: 1–88.Google Scholar
  12. Bleidorn, C., 2007. The role of character loss in phylogenetic reconstruction as exemplified for the Annelida. Journal of Zoological Systematics and Evolutionary Research 45: 299–307.CrossRefGoogle Scholar
  13. Boletzky, S. V., 1992. Evolutionary aspects of development, life style, and reproductive mode in incirrate octopods (Mollusca, Cephalopoda). Revue suisse de Zoologie 99: 755–770.Google Scholar
  14. Buckley, T. R., P. Arensburger, C. Simon & G. K. Chambers, 2002. Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera. Systematic Biology 51: 4–18.PubMedCrossRefGoogle Scholar
  15. Carlini, D. B., K. S. Reece & J. E. Graves, 2000. Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). Molecular Biology and Evolution 17: 1353–1370.PubMedCrossRefGoogle Scholar
  16. Carlini, D. B., R. E. Young & M. Vecchione, 2001. A molecular phylogeny of the Octopoda (Mollusca: Cephalopoda) evaluated in light of morphological evidence. Molecular Phylogenetics and Evolution 21: 388–397.PubMedCrossRefGoogle Scholar
  17. Cunningham, C. W., 1997. Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution 14: 733–740.PubMedCrossRefGoogle Scholar
  18. d’Acoz, C. D. & W. Vader, 2009. On Liljeborgia fissicornis (M. Sars, 1858) and three related new species from Scandinavia, with a hypothesis on the origin of the group fissicornis. Journal of Natural History 43: 2087–2139.CrossRefGoogle Scholar
  19. Dolphin, K., R. Belshaw, C. D. L. Orme & D. L. J. Quicke, 2000. Noise and incongruence: Interpreting results of the incongruence length difference test. Molecular Phylogenetics and Evolution 17: 401–406.PubMedCrossRefGoogle Scholar
  20. d’Orbigny, A., 1835–1843. Voyage dans l’Amérique méridionale execute pendant les années 1832–33; Vol. 5. Paris et Strasbourg.Google Scholar
  21. Drummond, A. J. & A. Rambaut, 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Drummond, A. J., S. Y. W. Ho, M. J. Phillips & A. Rambaut, 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Engeser, T., 1988. Fossil ‘octopods’—a critical review. In Clarke, M. R. & E. R. Trueman (eds), The Mollusca. Volume 12. Paleontology and Neontology of cephalopods. Academic Press, London: 81–87.CrossRefGoogle Scholar
  24. Engeser, T. & K. Bandel, 1988. Phylogenetic classification of coleoid cephalopods. In Wiedman, J. & J. Kullmann (eds), Cephalopods—Present and Past. SchweizerbartÕsche-Verlagsbuchhandlung, Stuttgart: 105–116.Google Scholar
  25. Farris, J. D., M. Källersjö, A. G. Kluge & C. Bult, 1994. Testing significance of incongruence. Cladistics 10: 315–319.CrossRefGoogle Scholar
  26. Farris, J. D., M. Källersjö, A. G. Kluge & C. Bult, 1995. Constructing a significance test for incongruence. Systematic Biology 44: 570–572.Google Scholar
  27. Fuchs, D., G. Bracchi & R. Weis, 2009. New octopods (Cephalopoda: Coleoidea) from the Late Cretaceous (Upper Cenomanian) of Hâkel and Hâdjoula, Lebanon. Palaeontology 52: 65–81.CrossRefGoogle Scholar
  28. Gilly, W. M. F. & M. T. Lucero, 1992. Behavioural responses to chemical stimulation of the olfactory organ in the squid Loligo opalescens. The Journal of Experimental Biology 162: 209–229.Google Scholar
  29. González, A. F., A. Guerra, S. Pascual & P. Briand, 1998. Vulcanoctopus hydrothermalis gen. et sp. nov. (Mollusca, Cephalopoda): an octopod from a deep-sea hydrothermal vent site. Cahiers de Biologie Marine 39: 169–184.Google Scholar
  30. González, A. F., A. Guerra, S. Pascual & M. Segonzac, 2008. Female description of the hydrothermal vent cephalopod Vulcanoctopus hydrothermalis. Journal of the Marine Biological Association of the UK 88: 375–379.Google Scholar
  31. Gray, J. E., 1849. Catalogue of the Mollusca. Part I. British Museum, London.Google Scholar
  32. Grimpe, G., 1921. Teuthologische Mitteilungen. VII: systematiche Ubersicht der Nordsee-cephalopoden. Zoologischer Anzeiger 52: 297–305.Google Scholar
  33. Guzik, M. T., M. D. Norman & R. H. Crozier, 2005. Molecular phylogeny of the benthic shallow-water octopuses (Cephalopoda: Octopodinae). Molecular Phylogenetics and Evolution 37: 235–248.PubMedCrossRefGoogle Scholar
  34. Hanlon, R. T. & J. B. Messenger, 1996. Cephalopod Behaviour. Cambridge University Press, Cambridge.Google Scholar
  35. Hipp, A. L., J. C. Hall & K. J. Sytsma, 2004. Congruence versus phylogenetic accuracy: revisiting the incongruence length difference test. Systematic Biology 53: 81–89.PubMedCrossRefGoogle Scholar
  36. Hochberg, F. G., M. Nixon & R. B. Toll, 1992. Octopoda. In Sweeney, M. J., C. F. E. Roper, K. M. Mangold, M. R. Clarke & S. V. Boletzky (eds), “Larval” and juvenile cephalopods: a manual for their identification. Smithsonian Contributions to Zoology 513: 213–280.Google Scholar
  37. Huffard, C. L. & R. L. Caldwell, 2002. Inking in a blue-ringed octopus, Hapalochlaena lunulata, with a vestigal ink sac. Pacific Science 56: 255–257.CrossRefGoogle Scholar
  38. Huffard, C. L. & F. G. Hochberg, 2005. Description of a new species of the genus Amphioctopus (Mollusca: Octopodidae) from the Hawai’ian Islands. Molluscan Research 25: 113–128.Google Scholar
  39. Johnson, K. P., R. H. Cruickshank, R. J. Adams, V. S. Smith, R. D. M. Page & D. H. Clayton, 2003. Dramatically elevated rate of mitochondrial substitution in lice (Insecta: Phthiraptera). Molecular Phylogenetics and Evolution 26: 231–242.PubMedCrossRefGoogle Scholar
  40. Jones, D. T., W. R. Taylor & J. M. Thornton, 1992. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences 8: 275–282.PubMedGoogle Scholar
  41. Lindgren, A. R., G. Giribet & M. K. Nishiguchi, 2004. A combined approach to the phylogeny of Cephalopoda (Mollusca). Cladistics 20: 454–486.CrossRefGoogle Scholar
  42. Lindgren, A. R., M. S. Pankey, F. G. Hochberg & T. H. Oakley, 2012. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evolutionary Biology 12: 129.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Lockhart, P. J., M. A. Steel, M. D. Hendy & D. Penny, 1994. Recovering evolutionary trees under a more realistic model of sequence evolution. Molecular Biology and Evolution 11: 605–612.PubMedGoogle Scholar
  44. Maddison, W. P. & D. R. Maddison, 2009. Mesquite: a modular system for evolutionary analysis. Version 2.6. [computer program]. http://mesquiteproject.org.
  45. Naef, A., 1921/1923. Cephalopoda. Fauna e flora del Golfo di Napoli, Monograph (translated from German by the Israel program for Scientific translations, 1972), Jerusalem.Google Scholar
  46. Norman, M. D., 1992. Ameloctopus litoralis gen. & sp. nov. (Cephalopoda: Octopodidae), a new shallow-water octopus from tropical Australian waters. Invertebrate Taxonomy 6: 567–582.CrossRefGoogle Scholar
  47. Norman, M. D. & F. G. Hochberg, 2005. The current state of octopus taxonomy. Phuket Marine Biological Center Research Bulletin 66: 127–154.Google Scholar
  48. Norman, M. D., F. G. Hochberg, C. Huffard & K. M. Mangold, 2009. Octopodidae Orbigny, 1839. Octopods, octopuses, devilfishes. Version 29 December 2009 (under construction). http://tolweb.org/Octopodidae/20194/2009.12.29. In the Tree of Life Web Project, http://tolweb.org/.
  49. O’Shea, S., 1999. The marine fauna of New Zealand: Octopoda (Mollusca: Cephalopoda). NIWA Biodiversity Memoir 112: 280 pp.Google Scholar
  50. O’Shea, S., 2004. The giant octopus Haliphron atlanticus (Mollusca: Octopoda) in New Zealand waters. New Zealand Journal of Zoology 31: 7–13.CrossRefGoogle Scholar
  51. Posada, D. & K. A. Crandall, 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.PubMedCrossRefGoogle Scholar
  52. Pfenninger, M., M. Hrabakova, D. Steinke & A. Depraz, 2005. Why do snails have hairs? A Bayesian inference of character evolution. BMC Evolutionary Biology 5: 59.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Phillips, M. J. & D. Penny, 2003. The root of the mammalian tree inferred from whole mitochondrial genomes. Molecular Phylogenetics and Evolution 28: 171–185.PubMedCrossRefGoogle Scholar
  54. Rambaut, A. R., 1996–2002. Se-Al. Sequence alignment editor v2.0a11. [computer program]. http://tree.bio.ed.ac.uk/software/seal/.
  55. Rambaut, A. & A. J. Drummond, 2002–2008a. LogCombiner v1.4.8 [computer program]. http://beast.bio.ed.ac.uk/LogCombiner/.
  56. Rambaut, A. & A. J. Drummond, 2002–2008b. TreeAnnotator v1.4.8 [computer program]. http://beast.bio.ed.ac.uk/TreeAnnotator/.
  57. Rambaut, A. & A. J. Drummond, 2003–2008. Tracer version 1.4.1 [computer program]. http://tree.bio.ed.ac.uk/software/tracer/.
  58. Robson, G. C., 1929. A Monograph of the Recent Cephalopoda (Part 1, Octopodinae). British Museum (Natural History), London.Google Scholar
  59. Robson, G. C., 1932. A Monograph of the Recent Cephalopoda Based on the Collections in the British Museum (Natural History), Part II, The Octopoda (Excluding the Octopodinae). British Museum (Natural History), London.Google Scholar
  60. Sasaki, M., 1929. A monograph of the dibranchiate cephalopods of the Japanese and adjacent waters. Journal of the College of Agriculture Hokkaido Imperial University 20(Suppl): 1–357.Google Scholar
  61. Schmidt, H. A., K. Strimmer, M. Vingron & A. von Haeseler, 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502–504.PubMedCrossRefGoogle Scholar
  62. Skinner, A., M. S. Y. Lee & M. N. Hutchinson, 2008. Rapid and repeated limb loss in a clade of scincid lizards. BMC Evolutionary Biology 8: 310.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Söller, R., K. Warnke, U. Saint-Paul & D. Blohm, 2000. Sequence divergence of mitochondrial DNA indicates cryptic biodiversity in Octopus vulgaris and supports the taxonomic distinctiveness of Octopus mimus (Cephalopoda: Octopodidae). Marine Biology 136: 29–35.CrossRefGoogle Scholar
  64. Sosa, I. D. B., K. Beckenbach, B. Hartwick & M. J. Smith, 1995. The molecular phylogeny of five Eastern North Pacific Octopus species. Molecular Phylogenetics & Evolution 4: 163–174.CrossRefGoogle Scholar
  65. Stamatakis, A., P. Hoover & J. Rougemont, 2008. A Rapid Bootstrap Algorithm for the RAxML Web-Servers. Systematic Biology 75: 758–771.CrossRefGoogle Scholar
  66. Stranks, T. N. & C. C. Lu, 1991. Post-embryonic development of the blue-ringed octopus Hapalochlaena maculosa. In Wells, F. E., D. I. Walker, H. Kirkman & R. Lethbridge (eds), Proceedings of the Third International Marine Biological Workshop: The Marine Flora and Fauna of Albany, Western Australia, 2 volumes: 713–722.Google Scholar
  67. Strugnell, J. & A. L. Allcock, 2010. Co-estimation of phylogeny and divergence times of the Argonautoidea using relaxed phylogenetics. Molecular Phylogenetics and Evolution 54: 701–708.PubMedCrossRefGoogle Scholar
  68. Strugnell, J. M., M. D. Norman, A. J. Drummond & A. Cooper, 2004. The octopuses that never came back to earth: neotenous origins for pelagic octopuses. Current Biology 18: R300–R301.CrossRefGoogle Scholar
  69. Strugnell, J., M. Norman, A. J. Drummond, J. Jackson & A. Cooper, 2005. Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Molecular Phylogenetics and Evolution 37: 426–441.PubMedCrossRefGoogle Scholar
  70. Strugnell, J., J. Jackson, A. J. Drummond & A. Cooper, 2006. Divergence time estimates for major cephalopod groups: evidence from multiple genes. Cladistics 22: 89–96.CrossRefGoogle Scholar
  71. Strugnell, J. M., M. A. Collins & A. L. Allcock, 2008a. Molecular evolutionary relationships of the octopodid genus Thaumeledone (Cephalopoda: Octopodidae) from the Southern Ocean. Antarctic Science 20: 245–251.CrossRefGoogle Scholar
  72. Strugnell, J. M., A. D. Rogers, P. A. Prodöhl, M. A. Collins & A. L. Allcock, 2008b. The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24: 853–860.CrossRefGoogle Scholar
  73. Strugnell, J., J. R. Voight, P. C. Collins & A. L. Allcock, 2009. Molecular phylogenetic analysis of a known and a new hydrothermal vent octopod: their relationships with the genus Benthoctopus (Cephalopoda: Octopodidae). Zootaxa 2096: 442–459.Google Scholar
  74. Sweeney, M. J. & C. F. E. Roper, 1998. Classification, type localities, and type repositories of recent cephalopoda. Smithsonian Contributions to Zoology 586: 561–599.Google Scholar
  75. Swofford, D. L. 1998. PAUP*4.0—Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer, Sunderland, MA.Google Scholar
  76. Taki, I., 1961. On two new eledonid octopods from the Antarctic Sea. Journal of the Faculty of Fisheries and Animal Husbandry, Hiroshima University 3: 297–316.Google Scholar
  77. Taki, I., 1964. On eleven new species of the Cephalopoda from Japan, including two new genera of Octopodinae. Journal of the Faculty of Fisheries and Animal Husbandry, Hiroshima University 5: 277–343.Google Scholar
  78. Tryon, G. W., 1879. A Manual of Conchology, Structural and Systematic, with Illustrations of the Species, Vol. 1. Academy of Natural Science, Conchology Section, Philadelphia.CrossRefGoogle Scholar
  79. Voight, J. R., 1993a. A cladistic reassessment of Octopodid classification. Malacologia 35: 343–349.Google Scholar
  80. Voight, J. R., 1993b. The arrangement of suckers on octopodid arms as a continuous character. Malacologia 35: 351–359.Google Scholar
  81. Voight, J. R., 1997. Cladistic analysis of the Octopods based on anatomical characters. Journal of Mollusan Studies 63: 311–325.CrossRefGoogle Scholar
  82. Voight, J. R., 2001. Morphological deformation in preserved specimens of the deep-sea octopus Graneledone. Journal of Molluscan Studies 67: 95–102.CrossRefGoogle Scholar
  83. Voss, G. L., 1988. Evolution and phylogenetic relationships of deep-sea octopods (Cirrata and Incirrata). In Clarke, M. R. & E. R. Trueman (eds), The Mollusca. Volume 12. Paleontology and neontology of cephalopods. Academic Press, London: 253–276.CrossRefGoogle Scholar
  84. Warnke, K., 1998. Diversitat des Artenkomplexes Octopus cf. vulgaris Cuvier, 1797 in “Beziehung zu seiner Verbreitung an der Ost- und Westkuste Lateinamerikas,” PhD thesis. University of Bremen, Shaker Verlag, Aachen.Google Scholar
  85. Yoder, A. D., J. A. Irwin & B. A. Payseur, 2001. Failure of the ILD to determine data combinability for slow loris phylogeny. Systematic Biology 50: 408–424.PubMedCrossRefGoogle Scholar
  86. Yokobori, S., D. J. Lindsay, M. Yoshida, K. Tsuchiya, A. Yamagishi, T. Maruyama & T. Oshima, 2007. Mitochondrial genome structure and evolution in the living fossil vampire squids, Vampyroteuthis infernalis, and extant cephalopods. Molecular Phylogenetics and Evolution 44: 898–910.PubMedCrossRefGoogle Scholar
  87. Young, R. E. & M. Vecchione, 1996. Analysis of morphology to determine primary sister taxon relationships within coleoid cephalopods. American Malacological Bulletin 12: 91–112.Google Scholar
  88. Young, R. E., M. Vecchione & D. T. Donovan, 1998. The evolution of coleoid cephalopods and their present biodiversity and ecology. South African Journal of Marine Science 20: 393–420.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jan M. Strugnell
    • 1
  • Mark D. Norman
    • 2
  • Michael Vecchione
    • 3
  • Michelle Guzik
    • 4
  • A. Louise Allcock
    • 5
  1. 1.Department of Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraAustralia
  2. 2.Sciences, Museum VictoriaMelbourneAustralia
  3. 3.NMFS National Systematics Laboratory, National Museum of Natural History, MRC-153Smithsonian InstitutionWashingtonUSA
  4. 4.Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental SciencesThe University of AdelaideAdelaideAustralia
  5. 5.Zoology, School of Natural Sciences and Ryan InstituteNational University of Ireland, GalwayGalwayIreland

Personalised recommendations