Hydrobiologia

, Volume 713, Issue 1, pp 199–205 | Cite as

Hydra of Hawaii: phylogenetic relationships with continental species

  • R. D. Campbell
  • A. R. Iñiguez
  • A. J. Iñiguez
  • D. E. Martínez
Primary Research Paper

Abstract

The presence of freshwater hydra in the Hawaiian Islands, over 3,700 km from the nearest continental margin, provokes the question of how these animals could reach the islands. We examined three islands for hydra and found two species (the brown hydra, Hydra vulgaris Pallas 1766, and green hydra, H. viridissima Pallas 1766) present at multiple locations on Oahu and Kauai, and at a single site on Hawaii. Phylogenetic analysis based on the internal transcribed spacer (ITS1 and ITS2) regions of ribosomal DNA indicates that all collected strains of brown hydra were closely related to each other—consistent with a single introduced origin. The analysis also shows that all sampled Hawaiian brown hydra fall within a specific clade of H. vulgaris. This clade is sister to a North American clade and nested within a deeper North/Central America clade. The clade with all the Hawaiian brown hydra includes also individuals from Southern California, suggesting a Californian origin for the brown Hawaiian hydra. Hawaiian hydra were probably transported to the islands by man.

Keywords

Evolution ITS Hydrozoa Cnidaria Oceanic islands 

References

  1. Akaike, H., 1987. Factor-analysis and Aic. Psychometrika 52(3): 317–332.CrossRefGoogle Scholar
  2. Brien, P., 1961. Etude d’Hydra pirardi (nov. Spec.). Bulletin Biologique de la France et de la Belgique 95: 301–364.Google Scholar
  3. Campbell, R. D., 1983. Identifying hydra species. In Lenhoff, H. M. (ed.), Hydra: research methods. Plenum Press, New York: 19–29.Google Scholar
  4. Campbell, R. D., 1987. A new species of Hydra (Cnidaria, Hydrozoa) from North-America with comments on species clusters within the genus. Zoological Journal of the Linnean Society 91(3): 253–263.CrossRefGoogle Scholar
  5. Campbell, R. D., 1999. The Hydra of Madagascar (Cnidaria: Hydrozoa). Annales de Limnologie 35(2): 95–104.CrossRefGoogle Scholar
  6. Chenna, R., H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G. Higgins & J. D. Thompson, 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research 31(13): 3497–3500.PubMedCrossRefGoogle Scholar
  7. Clague, D. A. & G. B. Dalrymple, 1989. Tectonics, geochronology, and origin of the Hawaiian-Emperor volcanic chain. In Winterer, E. L., D. M. Hussong & R. W. Decker (eds) The Eastern Pacific Ocean and Hawaii. The Geology of North America, Vol. N. Geological Society of America, Boulder, CO: 188–217.Google Scholar
  8. DeSalle, R., 1992. The origin and possible time of divergence of the Hawaiian Drosophilidae: evidence from DNA sequences. Molecular Biology and Evolution 9(5): 905–916.PubMedGoogle Scholar
  9. Englund, R. A., 2002. The loss of native biodiversity and continuing nonindigenous species introductions in freshwater, estuarine, and wetland communities of Perl Harbor, Oahu, Hawaiian Islands. Estuaries 25(3): 418–430.CrossRefGoogle Scholar
  10. Ewer, R. F., 1948. A review of the Hydridae and two new species of Hydra from Natal. Proc Zool Soc London, Vol. 118: 226–244.Google Scholar
  11. Givnish, T. J., K. J. Sytsma, J. F. Smith & W. J. Hahn, 1995. Molecular evolution, adaptive radiation, and geographic speciation in Cyanea (Campanulaceae, Lobelioidae). In Wagner, W. L. & V. A. Funk (eds), Hawaiian biogeography: evolution on a hotspot archipelago. Smithsonian Institution Press, Washington, DC: 288–337.Google Scholar
  12. Guindon, S. & O. Gascuel, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systems Biology 52(5): 696–704.CrossRefGoogle Scholar
  13. Hasty, J. M. & P. Yang, 2011. Survey of immature mosquito predators from taro fields on the Island of Kauai. Hawaii. Proceedings of the Hawaiian Entomological Society 43: 13–22.Google Scholar
  14. Holstein, T. W., 1995. Cnidaria: Hydrozoa. In Schwoerbel, J. & P. Zwick (eds) Süsswasserfauna von Mitteleuropa, Vol. B. 1/2 + 3. Gustav Fisher Verlag, Stuttgart, Jena, NY: xii-110.Google Scholar
  15. Jankowski, T., A. G. Collins & R. Campbell, 2008. Global diversity of inland water cnidarians. Hydrobiologia 595: 35–40.CrossRefGoogle Scholar
  16. Kanaev, I. I., 1969. Hydra. Essays on the Biology of Fresh Water Polyps (Translated by Edward T. Burrows and Howard, M. L.) In Howard, M. L. (ed.), Irvine, California.Google Scholar
  17. Koppers, A. A. P., 2009. Pacific region. In Gillespie, G. R. & D. A. Clague (eds), Encyclopedia of islands. University of California Press, Berkeley: 702–715.Google Scholar
  18. Kramp, P. L., 1938. Freshwater Hydrozoa. Zoology of Iceland 2(6): 1–2.Google Scholar
  19. Kramp, P. L., 1942. Freshwater Hydrozoa. In Jensen, A. S. (ed.), The Zoology of the Faroes, Vol. 6. A. F. Høst & Sønvol. 1, Copenhagen: 1–3.Google Scholar
  20. Ladefoged, T. N., C. T. Lee & M. W. Graves, 2008. Modeling life expectancy and surplus production of dynamic pre-contact territories in leeward Kohala. Hawai’i. Journal of Anthropological Archaeology 27(1): 93–110.CrossRefGoogle Scholar
  21. Lenhoff, H. M. & R. D. Brown, 1970. Mass culture of hydra: an improved method and its application to other aquatic invertebrates. Laboratory Animals 4: 139–154.PubMedCrossRefGoogle Scholar
  22. Martínez, D. E., A. R. Iñiguez, K. M. Percell, J. B. Willner, J. Signorovitch & R. D. Campbell, 2010. Phylogeny and biogeography of Hydra (Cnidaria: Hydridae) using mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 57(1): 403–410.PubMedCrossRefGoogle Scholar
  23. Matthews, D. C., 1966. A comparative study of Craspedacusta sowerbyi and Calpasoma dactyloptera life cycles. Pacific Science 20(2): 246–259.Google Scholar
  24. Miller, S. E., 1996. Biogeography of Pacific insects and other terrestrial invertebrates: A status report. In Keast, A. & S. E. Miller (eds) The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes. SPB Academic Publishingn bv, Amsterdam: 463–475.Google Scholar
  25. Mumford, E. P., 1940a. The present status of knowledge of polynesian fresh-water faunas. In: 6th Pacific Sci Congr, Berkeley, 1940a, Vol 4: 249–251.Google Scholar
  26. Mumford, E. P., 1940b. The present status of studies of faunal distribution with reference to oceanic islands. In: 6th Pacific Sci Congr, Berkeley, 1940b, Vol 4: 241–248.Google Scholar
  27. Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25(7): 1253–1256.PubMedCrossRefGoogle Scholar
  28. Price, J. P. & D. A. Clague, 2002. How old is the Hawaiian biota? Geology and phylogeny suggest recent divergence. Proceedings Biological Sciences/The Royal Society 269(1508): 2429–2435.PubMedCrossRefGoogle Scholar
  29. Pyle, R. L. & P. Pyle, 2009. The Birds of the Hawaiian Islands: Occurrence, History, Distribution, and Status. B.P. Bishop Museum, Honolulu, HI, U.S.A. Version 1 (31 December 2009).Google Scholar
  30. Rambaut, A., 2002. Se-Al: Sequence Alignment Editor Version 2.0a11.Google Scholar
  31. Rubinoff, D., B. S. Holland, M. S. Jose & J. A. Powell, 2011. Geographic proximity not a prerequisite for invasion: Hawaii not the cource of California invasion by light brown apple moth (Epiphyas postvittana). PLoS ONE 6(1).Google Scholar
  32. Russo, C. A. M., N. Takezaki & M. Nei, 1995. Molecular phylogeny and divergence times of Drosophilid species. Molecular Biology and Evolution 12: 391–404.PubMedGoogle Scholar
  33. Schulze, P., 1917. Neue Beiträge zu einer Monographie der Gattung Hydra. Archiv fur Biontologie Gesellschaft naturforschender Freunde 4(2): 39–119.Google Scholar
  34. Schulze, P., 1931. Hydridae des arktischen Gebietes. Romer & Schaudinn Fauna Arctica Jena 6: 55–58.Google Scholar
  35. Swofford, D. L., 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4.0b10 (Alvitec). Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  36. Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22): 4673–4680.PubMedCrossRefGoogle Scholar
  37. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25(24): 4876–4882.PubMedCrossRefGoogle Scholar
  38. Udvardy, M. D. F. & A. Engilis Jr., 2001. Migration of Northern Pintails across the Pacific with reference to the Hawaiian Islands. Studies Avian Biology 22: 124–132.Google Scholar
  39. Yamamoto, M. N. & A. W. Tagawa, 2000. Hawai’i’s native and exotic freshwater animals. Mutual Publishing, Honolulu, Hawaii.Google Scholar
  40. Zwickl, D. J., 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • R. D. Campbell
    • 1
  • A. R. Iñiguez
    • 2
  • A. J. Iñiguez
    • 2
  • D. E. Martínez
    • 2
  1. 1.Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineUSA
  2. 2.Department of BiologyPomona CollegeClaremontUSA

Personalised recommendations