, Volume 709, Issue 1, pp 89–99 | Cite as

Comparative study of the reproductive biology of two congeneric and introduced goby species: implications for management strategies

  • Zhiqiang Guo
  • Julien Cucherousset
  • Sovan Lek
  • Zhongjie Li
  • Fengyue Zhu
  • Jianfeng Tang
  • Jiashou LiuEmail author
Primary research paper


A full understanding of life history characteristics of invasive species is a fundamental prerequisite for the development of management strategies. Two introduced goby species (Rhinogobius cliffordpopei and Rhinogobius giurinus) have established highly abundant populations in Lake Erhai (China). In the present study, we examined the reproductive biology of these two species with the aim of improving the efficiency of management strategy. The results indicated that R. cliffordpopei spawned from February to June, whereas R. giurinus spawned from April to August. Rhinogobius cliffordpopei showed higher gonado-somatic indices and had larger eggs than R. giurinus. The adult sex ratio of R. cliffordpopei was female skewed, but that of R. giurinus was equal. Rhinogobius cliffordpopei showed a male-skewed sexual size dimorphism, whereas the body size of R. giurinus varied only slightly between males and females. The different reproductive traits appear as a crucial biologic aspect for developing control programs. Specifically, control measures should be implemented and/or intensified from September to February for R. cliffordpopei and from January to April for R. giurinus. The body size of the smaller R. cliffordpopei females is the determinant for minimal mesh size of the nets used in physical removals of R. cliffordpopei.


Goby Biological invasion Reproductive strategy Invasive species management 



The research was financially supported by the National Natural Science Foundation of China (No. 31172387), the Major Science and Technology Program for Water Pollution Control and Treatment of China (No. 2012ZX07105-004), and National S&T Supporting Program (No. 2012BAD25B08). We are extremely grateful to three anonymous reviewers for insightful comments, to T. Pool for editorial improvements, and to X. Chen for technical assistance. ZG, JC, and SL are members of the lab EDB, part of the “Laboratoire d’Excellence (LABEX) entitled TULIP (ANR-10-LABX-41).”

Supplementary material

10750_2012_1439_MOESM1_ESM.doc (232 kb)
Supplementary material 1 (DOC 232 kb)


  1. Antsulevich, A., 2007. First records of the tubenose goby Proterorhinus marmoratus (Pallas, 1814) in the Baltic Sea. Aquatic Invasions 2: 468–470.CrossRefGoogle Scholar
  2. Arbuckle, W. J., A. J. Belanger, L. D. Corkum, B. Zielinski, W. Li, S.-S. Yun, S. Bachynski & S. Scott, 2005. In vitro biosynthesis of novel 5β reduced steroids by the testis of the round goby, Neogobius melanostomus. General and Comparative Endocrinology 1140: 1–13.CrossRefGoogle Scholar
  3. Blanckenhorn, W. U., R. C. Stillwell, K. A. Young, C. W. Fox & K. G. Ashton, 2006. When Rensch meets Bergmann: does sexual size dimorphism change systematically with latitude? Evolution 60: 2004–2011.Google Scholar
  4. Britton, J. R., R. E. Gozlan & G. H. Copp, 2011. Managing non-native fish in the environment. Fish and Fisheries 12: 256–274.CrossRefGoogle Scholar
  5. Colonello, J. C., M. L. García & R. C. Menni, 2011. Reproductive biology of the lesser guitarfish Zapteryx brevirostris from the south-western Atlantic Ocean. Journal of Fish Biology 78: 287–302.PubMedCrossRefGoogle Scholar
  6. Cooper, M. J., C. R. Ruetz III, D. G. Uzarski & T. M. Burton, 2007. Distribution of round gobies in coastal areas of Lake Michigan: are wetlands resistant to invasion? Journal of Great Lakes Research 33: 303–313.CrossRefGoogle Scholar
  7. Copp, G. H., P. G. Bianco, N. Bogutskaya, et al., 2005. To be, or not to be, a non-native freshwater fish? Journal of Applied Ichthyology 21: 242–262.CrossRefGoogle Scholar
  8. Corkum, L. D., M. R. Sapota & K. E. Skora, 2004. The round goby, Neogobius melanostomus, a fish invader on both sides of the Atlantic Ocean. Biological Invasions 6: 173–181.CrossRefGoogle Scholar
  9. Costantini, D., E. Bruner, A. Fanfani & G. Dell’Omo, 2007. Male-biased predation of western green lizards by Eurasian kestrels. Naturwissenschaften 94: 1015–1020.PubMedCrossRefGoogle Scholar
  10. Cucherousset, J. & J. D. Olden, 2011. Ecological impacts of non-native freshwater fishes. Fisheries 36: 215–230.CrossRefGoogle Scholar
  11. Dillon, A. K. & C. A. Stepien, 2001. Genetic and biogeographic Relationships of the invasive round (Neogobius melanostomus) and tubenose (Pro-terorhinus marmoratus) gobies in the Great Lakes versus Eurasian populations. Journal of Great Lakes Research 27: 267–280.CrossRefGoogle Scholar
  12. Du, B. & Y. Li, 2001. Danger risk to fish diversity in Lake Erhai and proposals to dispel it. Research of Environmental Sciences 14: 42–45. (in Chinese with English abstract).Google Scholar
  13. Fairbairn, D. J., 2007. Introduction: the enigma of sexual size dimorphism. In Blanckenhorn, W., D. Fairbairn & T. Székely (eds.), Sex, Size and Gender Roles. Oxford University Press, Oxford: 27–37.CrossRefGoogle Scholar
  14. Gozlan, R. E., J. R. Britton, I. Cowx & G. H. Copp, 2010. Current knowledge on non-native freshwater fish introductions. Journal of Fish Biology 76: 751–786.CrossRefGoogle Scholar
  15. Guo, Z., J. Liu, S. Lek, Z. Li, S. Ye, F. Zhu, J. Tang & J. Cucherousset, 2012. Habitat segregation between two congeneric and introduced goby species. Fundamental Applied Limnology (in press).Google Scholar
  16. Hurtado-Gonzales, J. L., D. T. Baldassarre & J. A. C. Uy, 2010. Interaction between female mating preferences and predation may explain the maintenance of rare males in the pentamorphic fish Poecilia parae. Journal of Evolutionary Biology 23: 1293–1301.PubMedCrossRefGoogle Scholar
  17. Ito, S. & Y. Yanagisawa, 2003. Mate choice and mating pattern in a stream goby of the genus Rhinogobius. Environmental Biology of Fishes 66: 67–73.CrossRefGoogle Scholar
  18. Karatayev, A. Y., L. E. Burlakova, V. A. Karatayev & D. K. Padill, 2009. Introduction, distribution, spread, and impacts of exotic freshwater gastropods in Texas. Hydrobiologia 619: 181–194.CrossRefGoogle Scholar
  19. Knapp, R. A. & K. R. Matthews, 1998. Eradication of non-native fish by gill-netting from a small mountain lake in California. Restoration Ecology 6: 207–213.CrossRefGoogle Scholar
  20. Kolar, C. S. & D. M. Lodge, 2002. Ecological predictions and risk assessment for alien fishes in North America. Science 298: 1233–1236.PubMedCrossRefGoogle Scholar
  21. Krakowiak, P. J. & C. M. Pennuto, 2008. Fish and macroinvertebrate communities in tributary streams of Eastern Lake Erie with and without round gobies (Neogobius melanostomus, Pallas 1814). Journal of Great Lakes Research 34: 675–689.Google Scholar
  22. Li, W., A. P. Scott, M. J. Siefkes, H. Yan, Q. Liu, S.-S. Yun & D. A. Gage, 2002. Bile acid secreted by male sea lamprey that acts as a sex pheromone. Science 296: 138–141.Google Scholar
  23. Liker, A. & T. Sźekely, 2005. Mortality costs of sexual selection and parental care in natural populations of birds. Evolution 59: 890–897.PubMedGoogle Scholar
  24. Ling, N., 2002. Rotenone – a review of its toxicity and use for fisheries management. Science for Conservation 211. Department of Conservation, Wellington, NZ: 38–40.Google Scholar
  25. Ludgate, B. G. & G. P. Closs, 2003. Responses of fish communities to sustained removals of perch (Perca fluviatilis). Science for Conservation 210, Department of Conservation, Wellington, NZ: 35–38.Google Scholar
  26. Ma, T. W. & C. X. Xie, 1999. Diet composition of adult Channa argus in Liangzi Lake. Reservoir Fisheries 19: 1–3. (in Chinese with English abstract).Google Scholar
  27. Malavasi, S., K. Lindström & L. Sundström, 2001. Behaviour and success of sneaker males in the sand goby, Pomatoschistus minutus. Acta Ethologica 4: 3–9.CrossRefGoogle Scholar
  28. Marking, L. L. & T. D. Bills, 1976. Toxicity of rotenone to fish in standardised laboratory tests. U.S. Fish and Wildlife Service Investigations in Fish Control 72: 1–11.Google Scholar
  29. McKellar, A. E. & A. P. Hendry, 2011. Environmental factors influencing adult sex ratio in Poecilia reticulata: laboratory experiments. Journal of Fish Biology 79: 937–953.PubMedCrossRefGoogle Scholar
  30. McKellar, A. E., M. M. Turcotte & A. P. Hendry, 2009. Environmental factors influencing adult sex ratio in Trinidadian guppies. Oecologia 159: 735–745.PubMedCrossRefGoogle Scholar
  31. Meekan, M. G., S. G. Wilson, A. Halford & A. Retzel, 2001. A comparison of catches of fishes and inverterates by two light trap designs, in tropic NW Australia. Marine Biology 139: 373–381.Google Scholar
  32. Nakazawa, T., N. Ishida, M. Kato & N. Yamamura, 2007. Larger body size with higher predation rate. Ecology of Freshwater Fish 16: 362–372.CrossRefGoogle Scholar
  33. Nikolsky, G. V., 1963. Reproduction and Development of Fishes. In The Ecology of Fishes. Acadamic Press. London & New York: 147–187.Google Scholar
  34. R Development Core Team, 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at:
  35. Reardon, E. E. & X. Thibert-Plante, 2010. Optimal offspring size influenced by the interaction between dissolved oxygen and predation pressure. Evolutionary Ecology Research 12: 377–387.Google Scholar
  36. Saunders, G., B. Cooke, K. McColl, R. Shine & T. Peacock, 2010. Modern approaches for the biological control of vertebrate pests: an Australian perspective. Biological Control 52: 288–295.CrossRefGoogle Scholar
  37. Sutherland, W. J., W. M. Adams, R. B. Aronson, R. Aveling & T. M. Blackburn, 2009. One hundred questions of importance to the conservation of global biological diversity. Conservation Biology 23: 557–567.PubMedCrossRefGoogle Scholar
  38. Takahashi, D., M. Kohda & Y. Yanagisawa, 2001. Male–male competition for large nests as a determinant of male mating success in a Japanese stream goby, Rhinogobius sp. DA. Ichthyological Research 48: 91–95.CrossRefGoogle Scholar
  39. Taylor, C. M. & A. Hastings, 2004. Finding optimal control strategies for invasive species: a density-structured model for Spartina alterniflora. Journal of Applied Ecology 41: 1049–1057.CrossRefGoogle Scholar
  40. Vilizzi, L., S. N. Meredith, C. P. Sharpe & R. Rehwinkel, 2008. Evaluating light trap efficiency by application of mesh to prevent inter- and intra-specific in situ predation on fish larvae and juveniles. Fisheries Research 93: 146–153.CrossRefGoogle Scholar
  41. Wimbush, J., M. E. Frischer, J. W. Zarzynski & S. A. Nierzwicki-Bauer, 2009. Eradication of colonizing populations of zebra mussels (Dreissena polymorpha) by early detection and SCUBA removal: Lake George, NY. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 703–713.CrossRefGoogle Scholar
  42. Winfield, I. J., J. M. Fletcher & J. B. James, 2011. Invasive fish species in the largest lakes of Scotland, Northern Ireland, Wales and England: the collective UK experience. Hydrobiologia 660: 93–103.CrossRefGoogle Scholar
  43. Wu, H. L. & J. S. Zhong, 2008. Fauna sinica, Ostichthyes, Perciformes (V), Gobioidei. Beijing Science Press, Beijing: 580–598. (in Chinese with English abstract).Google Scholar
  44. Xie, S., Y. Cui, T. Zhang & Z. Li, 2000. Seasonal patterns in feeding ecology of three small fishes in the Biandantang Lake China. Journal of Fish Biology 57: 867–880.Google Scholar
  45. Xie, Y., Z. Li, W. P. Gregg & D. Li, 2001. Invasive species in China—an overview. Biodiversity and Conservation 10: 1317–1341.CrossRefGoogle Scholar
  46. Yan, Y. Z. & Y. F. Chen, 2007. Plasticity in reproductive tactics of Ctenogobius giurinus in Lake Fuxian. Acta Hydrobiologica Sinica 31: 414–418. (in Chinese with English abstract).Google Scholar
  47. Yeates, A. G., S. S. Schooler, R. J. Garono & Y. M. Buckley, 2012. Biological control as an invasion process: disturbance and propagule pressure affect the invasion success of Lythrum salicaria biological control agents. Biological Invasions 14: 255–271.CrossRefGoogle Scholar
  48. Yuan, G., H. Ru & X. Liu, 2010. Fish diversity and fishery resources in lakes of Yunnan Plateau during 2007–2008. Journal of Lake Sciences 22: 837–841. (in Chinese with English abstract).Google Scholar
  49. Zhang, T., 2005. Comparative studies on life history of ten small-sized fishes in Lake Biandantang. In Life history strategies, trophic patterns and community structure in the fishes of Lake Biandantang. PhD Dissertation, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan: 37–60 (in Chinese with English abstract).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Zhiqiang Guo
    • 1
    • 2
    • 3
    • 4
  • Julien Cucherousset
    • 2
    • 3
  • Sovan Lek
    • 1
    • 2
    • 3
  • Zhongjie Li
    • 1
  • Fengyue Zhu
    • 1
    • 4
  • Jianfeng Tang
    • 1
    • 4
  • Jiashou Liu
    • 1
    Email author
  1. 1.State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of Hydrobiology, The Chinese Academy of SciencesWuhanChina
  2. 2.CNRS, UPS, ENFA, UMR5174 EDB (Laboratoire Évolution et Diversité Biologique)ToulouseFrance
  3. 3.Université de Toulouse, UPS, UMR5174 EDBToulouseFrance
  4. 4.Graduate University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations