Hydrobiologia

, Volume 709, Issue 1, pp 11–25 | Cite as

Importance of geochemical factors in determining distribution patterns of aquatic invertebrates in mountain streams south of the Atacama Desert, Chile

  • Ingrid E. Alvial
  • Karine Orth
  • Bárbara C. Durán
  • Evelyn Álvarez
  • Francisco A. Squeo
Primary Research Paper

Abstract

The ecology of macroinvertebrate communities in arid regions is still poorly understood. Here we examined how the community structure varied at spatial and temporal scales in streams and tributaries of the Huasco River in semi-arid region of Northern Chile. We expected that macroinvertebrate distribution may be responding to natural processes of mineralization described for Chilean semiarid basins. The relationships among biotic and abiotic variables were assessed through multivariate techniques (principal component analysis, non-metric multidimensional scaling, canonical correspondence analysis), and a two-way analysis of similarity was used to evaluate differences between basins and years (2007, 2008, and 2009). Significant differences in community structure and physical–chemical variables between basins (Del Carmen and Del Tránsito) were found, but not between years. Altitude, Mn, Al, Ca, Na, HCO3, and dissolved oxygen were the variables that best accounted for the communities distribution. In particular, high metals concentration in El Transito basin should determine low density and diversity of macroinvertebrates. Chironomidae, Ephydridae, and Glossiphoniidae were associated to waters with high metals content and acidic pH, whereas Baetidae, Hydroptilidae, and Blephariceridae were associated to sites with more favorable physical–chemical conditions. These results contribute to understand the ecological patterns of macroinvertebrates in arid regions and should lead to conservation and monitoring plans for this remote place.

Keywords

Huasco basin Desert climate Macroinvertebrates Biomonitoring Habitat variables 

References

  1. Anderson, Ch., 2007. Effects of mining on benthic macroinvertebrate communities and monitoring strategy. In Church, S. E., P. Guerard & S. Finger (eds), Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed. San Juan County, Colorado: 853–872.Google Scholar
  2. Arnaiz, O., A. Wilson, R. Watts & M. Stevens, 2011. Influence of riparian condition on aquatic macroinvertebrate communities in an agricultural catchment in south-eastern Australia. Ecological Research 26: 123–131.CrossRefGoogle Scholar
  3. Barba, B., A. Larrañaga, A. Otermin, A. Basaguren & J. Pozo, 2010. The effect of sieve mesh size on the description of macroinvertebrate communities. Limnetica 29: 211–220.Google Scholar
  4. Bonada, N., M. Rieradevall, H. Dallas, J. Davis, J. Day, R. Figueroa, V. Resh & N. Prat, 2008. Multi-scale assessment of macroinvertebrate richness and composition in Mediterranean-climate rivers. Freshwater Biology 53: 772–788.CrossRefGoogle Scholar
  5. Boulton, A., F. Sheldon & K. Jenkins, 2006. Natural disturbance and aquatic invertebrates in desert rivers. In Kingsford, R. (ed.), Ecology of Desert Rivers. University of New South Wales, Sydney: 133–153.Google Scholar
  6. Camousseight, A., 2006. Estado de conocimiento de los efemerópteros de Chile. Gayana 70: 50–56.Google Scholar
  7. Chouinard, A., J. Williams, A. Leonardson, R. Hodgson, C. Silva, P. Tellez, C. Vega & F. Rojas, 2005. Geology and genesis of the multistage high-sulfidation epithermal Pascua Au–Ag–Cu deposit, Chile and Argentina. Economic Geology 3: 463–490.CrossRefGoogle Scholar
  8. Clarke, K. & R. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.Google Scholar
  9. Contreras, M., L. Fuentes, G. Martínez, E. Araya, L. Salinas, S. Muñoz, O. Martínez & A. De la Fuente, 2005. Informe Final: Evaluación de la condición ambiental de los ecosistemas acuáticos y humedales de los ríos Estrecho, Chollay y Barriales. Centro de Ecología Aplicada, Santiago.Google Scholar
  10. Cortés, A., E. Miranda & F. López-Cortés, 2006. Abundancia y dieta del camélido Lama Guanicoe en un ambiente altoandino del Norte-centro de Chile. In Cepeda, P. (ed.), Geoecología de los Andes desérticos. La Alta Montaña del Valle del Elqui. Ediciones Universidad de La Serena, La Serena: 383–411.Google Scholar
  11. Courtney, L. & W. Clements, 1998. Effects of acidic pH on benthic macroinvertebrate communities in stream microcosms. Hydrobiologia 379: 135–145.CrossRefGoogle Scholar
  12. Dangles, O., B. Malmqvist & H. Laudon, 2004. Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. Oikos 104: 149–155.CrossRefGoogle Scholar
  13. Dirección General de Aguas, 2004. Diagnostico y clasificación de los cursos y cuerpos de agua según objetivos de calidad: Cuenca del río Huasco. DGA – Dirección General de Aguas, Santiago.Google Scholar
  14. Domínguez, E. & H. Fernández, 2009. Macroinvertebrados bentónicos sudamericanos. Sistemática y biología. Fundación Miguel Lillo, Tucumán.Google Scholar
  15. Fernández, H. & E. Domínguez, 2001. Guía para la determinación de los artrópodos bentónicos sudamericanos. Investigación de la Universidad Nacional de Tucumán.Google Scholar
  16. Figueroa, R., M. Suarez, A. Andreu & V. Ruiz, 2009. Caracterización ecológica de humedales de la zona semiárida en Chile Central. Gayana 73: 76–94.Google Scholar
  17. Gascoin, S., C. Kinnard, R. Ponce, S. Lhermitte, S. MacDonell & A. Rabatel, 2010. Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. The Cryosphere Discuss 4: 2373–2413.CrossRefGoogle Scholar
  18. Grandjean, F., J. Momon & M. Bramard, 2003. Biological water quality assessment of the whit-clawed crayfish habitat based on macroinvertebrate communities: usefulness for its conservation. Bulletin Francaise de la Peche et De la Pisciculture 370–371: 115–125.CrossRefGoogle Scholar
  19. Hammer, Ø., D. A. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9.Google Scholar
  20. Humphries, P. & D. Baldwin, 2003. Drought and aquatic ecosystems: an introduction. Freshwater Biology 48: 1141–1146.CrossRefGoogle Scholar
  21. Instituto Nacional de Normalización, 2003. Norma Chilena 411/6 Of.96 Calidad del agua-muestreo-Parte 6: Guía para el muestreo de ríos y cursos de agua, Santiago.Google Scholar
  22. Jacobsen, D., S. Rostgaard & J. Vasconez, 2003. Are macroinvertebrates in high altitude streams affected by oxygen deficiency? Freshwater Biology 48: 2025–2032.CrossRefGoogle Scholar
  23. Juliá, C., S. Montecinos & A. Maldonado, 2008. Características climáticas de la región de Atacama. In Squeo, F. A., G. Arancio & J. R. Gutiérrez (eds), Libro rojo de la flora nativa y de los sitios prioritarios para su conservación: región de Atacama. Ediciones Universidad de La Serena, La Serena: 25–42.Google Scholar
  24. Kazanci, N. & M. Dügel, 2010. Determination of influence of heavy metals on structure of benthic macroinvertebrate assemblages in low order Mediterranean streams by using canonical correspondence analysis. Review of Hydrobiology 3: 13–26.Google Scholar
  25. Kingsford, R., 2000. Protecting rivers in arid regions on pumping them dry? Hydrobiologia 427: 1–11.CrossRefGoogle Scholar
  26. Lampert, W. & U. Sommer, 2007. Limnoecology. Oxford University Press, New York.Google Scholar
  27. Loayza, R., R. Letts, J. Marticorena, E. Palomino, J. Duivenvoorden, M. Kraak & W. Admiraal, 2010. Metal-induced shifts in benthic macroinvertebrate community composition in Andean high altitude streams. Environmental Toxicology and Chemistry 29: 2761–2768.CrossRefGoogle Scholar
  28. Maksaev, V., R. Moscoso, C. Mpodozis & C. Nasi, 1984. Las unidades volcánicas y plutónicas del cenozoico superior en la alta cordillera del Norte Chico (29°–31°S): Geología, alteración hidrotermal y mineralización. Revista Geológica de Chile 21: 11–51.Google Scholar
  29. Masiokas, M., A. Rivera, L. Espinoza, R. Villalba, S. Delgado & J. Delgado, 2009. Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeography, Palaeoclimatology and Palaeoecology 281: 242–268.CrossRefGoogle Scholar
  30. Oyarzún, J., H. Maturana, A. Paulo & A. Pasieczna, 2003. Heavy metals in stream sediments from the Coquimbo Region (Chile): effects of sustained mining and natural processes in a semi-arid Andean basin. Mine Water and the Environment 22: 155–161.CrossRefGoogle Scholar
  31. Oyarzún, R., J. Lillo, J. Oyarzún, P. Higueras & H. Maturana, 2006. Strong metal anomalies in stream sediments from semiarid watersheds in Northern Chile: when geological and structural analysis contribute to understanding environmental disturbances. International Geology Review 48: 1133–1144.CrossRefGoogle Scholar
  32. Petrin, Z., H. Laudon & B. Malmqvist, 2007. Does freshwater macroinvertebrate diversity along a pH-gradient reflect adaptation to low pH? Freshwater Biology 52: 2172–2183.CrossRefGoogle Scholar
  33. Petrin, Z., G. Englund & B. Malmqvist, 2008. Contrasting effects of anthropogenic and natural acidity in streams: a meta-analysis. Proceedings of The Royal Society 275: 1143–1148Google Scholar
  34. Quinn, G. & M. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  35. Rosemond, A., S. Reice, J. Elword & P. Mulholland, 1992. The effects of stream acidity on benthic invertebrate communities in the south-eastern United States. Freshwater Biology 27: 193–209.CrossRefGoogle Scholar
  36. Rosenberg, D. & V. Resh, 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York.Google Scholar
  37. Sabater, S., H. Guasch, I. Muñoz & A. Romaní, 2006. Hydrology, light and the use of organic and inorganic materials as structuring factors of biological communities in Mediterranean stream. Limnetica 25: 335–348.Google Scholar
  38. Sánchez, A. & R. Morales, 1990. Las Regiones de Chile. Editorial Universitaria, Santiago.Google Scholar
  39. Smolders, A., R. Lock, G. Van der Velde, R. Medina-Hoyo & J. Roelofs, 2003. Effects of mining activities on heavy metal concentrations in water, sediment and macroinvertebrates in different reaches of the Pilcomayo river, South America. Archives of Environmental Contamination and Toxicology 44: 314–323.PubMedCrossRefGoogle Scholar
  40. Solà, C., M. Burgos, A. Plazuelo, J. Toja, M. Plans & N. Prat, 2004. Heavy metal bioaccumulation and macroinvertebrate community changes in a Mediterranean stream affected by acid mine drainage and an accidental spill (Guadiamar River, SW Spain). Science of the Total Environment 333: 109–126.PubMedCrossRefGoogle Scholar
  41. Squeo, F., B. Warner, R. Aravena & D. Espinoza, 2006a. Bofedales: high altitude peatlands of the central Andes. Revista Chilena de Historia Natural 79: 245–255.CrossRefGoogle Scholar
  42. Squeo, F., E. Ibacache, B. Warner, D. Espinoza, R. Aravena & J. Gutiérrez, 2006b. Productividad y diversidad florística de la vega Tambo. In Cepeda, P. (ed.), Geoecología de los Andes desérticos. La alta montaña del Valle del Elqui. Ediciones Universidad de La Serena, La Serena: 325–351.Google Scholar
  43. Squeo, F. A., G. Arancio & J. R. Gutiérrez, 2008. Libro rojo de la flora nativa y de los sitios prioritarios para su conservación: región de Atacama. Ediciones Universidad de La Serena, La Serena.Google Scholar
  44. Strauch, G., R. Oyarzún, F. Reinstorf, J. Oyarzun, M. Schirmer & K. Knôller, 2009. Interaction of water components in the semi-arid Huasco and Limarí river basins, North Central Chile. Advances in Geosciences 22: 51–57.CrossRefGoogle Scholar
  45. Sumi, Y., H. Fukuoka, T. Murakami, T. Suzuki, S. Hatakeyama & K. Suzuki, 1991. Histochemical localization of copper, iron and zinc in the larvae of the mayfly Baetis thermicus inhabiting a river polluted with heavy metals. Zoological Science 8: 287–293.Google Scholar
  46. Tachet, H., P. Richouxm, M. Bournard & P. Usseglio, 2003. Invertébrés d’eau douce: Systématique, biologie, écologie. CNRS Editions, Paris.Google Scholar
  47. Ter Braak, C., 1990. Interpreting canonical correlation analysis through biplots of structural correlations and weights. Psychometrika 55: 519–531.CrossRefGoogle Scholar
  48. Ter Braak, C. & P. Smilauer, 1998. CANOCO Reference Manual and User’s Guide to CANOCO for Windows: Software for Canonical Community Ordination (Version 4). Microcomputer Power, Ithaca.Google Scholar
  49. Thorp, J. & A. Covich, 2001. Ecology and Classification of North American Freshwater Invertebrates, 2nd ed. Academic Press, San Diego.Google Scholar
  50. Tokeshi, M., 1995. Life cycles and population dynamics. In Armitage, P., P. S. Cranston & L. C. Pinder (eds), The Chironomidae: Biology and Ecology of Non-biting Midges. Chapman & Hall, London: 225–275.Google Scholar
  51. Tripole, S., E. Vallania & M. Corigliano, 2008. Benthic macroinvertebrate tolerance to water acidity in the Grande river sub-basin (San Luis, Argentina). Limnetica 27: 29–38.Google Scholar
  52. Van Damme, P., C. Hamel, A. Ayala & L. Bervoets, 2008. Macroinvertebrate community response to acid mine drainage in Rivers of the High Andes (Bolivia). Environmental Pollution 156: 1061–1068.PubMedCrossRefGoogle Scholar
  53. Vidal-Abarca, M. & M. Suárez, 2007. Un modelo conceptual sobre el funcionamiento de los ríos mediterráneos sometidos a perturbaciones naturales (riadas y sequías). Limnética 26: 277–292.Google Scholar
  54. Vila, I. & X. Molina, 2006. Manual de evaluación de la calidad del agua. Centro Nacional del Medio Ambiente CENMA, Santiago.Google Scholar
  55. Vila, I., R. Pardo & F. Squeo, 2002. Informe: Monitoreo y actualización de línea de base de recursos bióticos proyecto Pascua-Lama: fauna acuática. Departamento de Biología, Universidad de La Serena, La Serena.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Ingrid E. Alvial
    • 1
    • 2
  • Karine Orth
    • 2
  • Bárbara C. Durán
    • 1
    • 2
  • Evelyn Álvarez
    • 2
  • Francisco A. Squeo
    • 1
    • 2
    • 3
  1. 1.Center for Advanced Studies in Arid Zones (CEAZA)La SerenaChile
  2. 2.Universidad de La SerenaLa SerenaChile
  3. 3.Institute of Ecology and Biodiversity (IEB)SantiagoChile

Personalised recommendations