Advertisement

Hydrobiologia

, Volume 705, Issue 1, pp 119–134 | Cite as

Organic pollution induces domestication-like characteristics in feral populations of brown trout (Salmo trutta)

  • Fernando Cobo
  • Javier Sánchez-Hernández
  • Rufino Vieira-Lanero
  • María J. Servia
Primary Research Paper

Abstract

Sewage pollutants may impair growth or survival of the freshwater biota, though animals might benefit from the extra food availability as production increases. We examined biochemical (muscle glycogen), morphological (condition factor and hepatosomatic index), and diet biomarkers in brown trout for evaluating the effects of chronic exposure to organic pollution. Trout were collected at three locations: ST1 downstream of a trout farm, ST2 affected by the effluents of a wastewater treatment plant and ST3, the reference site. Individuals at polluted sites showed high hepatosomatic index, although no differences were found between ST2 and ST3 for the condition factor. A significant reduction was detected in the levels of muscle glycogen of individuals captured at polluted sites. Moreover, trout diet in these rivers was dominated quantitatively by Chironomidae and Simuliidae, in contrast with the diverse diet of individuals at ST3. Remarkably, individuals at polluted sites showed high stomach fullness and energy gut values, which might be considered as a case of hyperphagia. Our findings suggest that food surplus in organic enriched sites, in the form of high densities of macroinvertebrates, provide an environment similar to that of domesticated animals, where individuals might adopt less energetically costly behavioural strategies to ingest more food.

Keywords

Organic pollution Glycogen Morphometric indices Diet Hyperphagia 

Notes

Acknowledgments

Part of this study has been carried out in the laboratories of the Station of Hydrobiology of USC ‘Encoro do Con’ in Vilagarcía de Arousa. This study has been partially supported by the project 10PXIB2111059PR of the Xunta de Galicia, FEDER funds through project CGL2009-10868 of the Ministry of Science and Innovation and the project MIGRANET of the Interreg IV B SUDOE (South-West Europe) Territorial Cooperation Programme (SOE2/P2/E288). The authors gratefully acknowledge the comments of three anonymous reviewers.

Supplementary material

10750_2012_1386_MOESM1_ESM.doc (52 kb)
Appendix A Macroinvertebrate traits, categories and codes used in analyses and graphics. Based on de Crespin de Billy and Usseglio-Polatera (2002) (DOC 53 kb)
10750_2012_1386_MOESM2_ESM.doc (143 kb)
Appendix B Trout diet composition. Number of prey (N), abundance (A i ) and frequency of occurrence (F i ). ST1: River Traba; ST2: River Sar and ST3: River Rois.*Not identified (DOC 143 kb)
10750_2012_1386_MOESM3_ESM.tif (101.5 mb)
Appendix C Complementary biplots of ecological traits analyses obtained from a fuzzy principal component analysis (FPCA) showing no differences among sites (TIF 101 mb)

References

  1. Adams, S. M., K. D. Ham, M. S. Greeley, D. E. LeHew, R. F. Hinton & C. F. Saylor, 1996. Downstream gradients in bioindicator responses: point source contaminant effects on fish health. Canadian Journal of Fisheries and Aquatic Sciences 53: 2177–2187.CrossRefGoogle Scholar
  2. Alberto, A., A. F. M. Camargo, J. R. Verani, O. F. T. Costa & M. N. Fernandes, 2005. Health variables and gill morphology in the tropical fish Astyanax fasciatus from a sewage-contaminated river. Ecotoxicology and Environmental Safety 61: 247–255.PubMedCrossRefGoogle Scholar
  3. Ali, M., A. G. Nicieza & R. J. Wootton, 2003. Compensatory growth in fishes: a response to growth depression. Fish and Fisheries 4: 147–190.CrossRefGoogle Scholar
  4. Andersson, M., E. Nordin & P. Jensen, 2001. Domestication effects on foraging strategies in fowl. Applied Animal Behaviour Science 72: 51–62.PubMedCrossRefGoogle Scholar
  5. Barber, L. B., K. E. Lee, D. L. Swackhamer & H. L. Schoenfuss, 2007. Reproductive responses of male fathead minnows exposed to wastewater treatment plant effluent, effluent treated with XAD8 resin, and an environmentally relevant mixture of alkylphenol compounds. Aquatic Toxicology 82: 36–46.PubMedCrossRefGoogle Scholar
  6. Beamish, F. W. H. & A. Tandler, 1990. Ambient ammonia, diet and growth in lake trout. Aquatic Toxicology 17: 155–166.CrossRefGoogle Scholar
  7. Beaumont, M. W., P. J. Butler & E. W. Taylor, 1995. Plasma ammonia concentration in brown trout in soft acidic water and its relationship to decreased swimming performance. Journal of Experimental Biology 198: 2213–2220.PubMedGoogle Scholar
  8. Beaumont, M. W., P. J. Butler & E. W. Taylor, 2000. Exposure of brown trout, Salmo trutta, to a sub-lethal concentration of copper in soft acidic water: effects upon muscle metabolism and membrane potential. Aquatic Toxicology 51(2): 259–272.PubMedCrossRefGoogle Scholar
  9. Benejam, L., J. Benito & E. García-Berthou, 2010. Decrease of condition and fecundity of freshwater fish in a highly polluted reservoir. Water, Air, and Soil pollution 210: 231–242.CrossRefGoogle Scholar
  10. Bernet, D., H. Schmidt, T. Wahli & P. Burkhardt-Holm, 2000. Effects of waste water on fish health: an integrated approach to biomarker responses in brown trout (Salmo trutta L.). Journal of Aquatic Ecosystem Stress and Recovery 8: 143–151.CrossRefGoogle Scholar
  11. Buet, A., D. Bana, Y. Vollaire, E. Coulet & H. Roche, 2006. Biomarker responses in European eel (Anguilla anguilla) exposed to persistent organic pollutants. A field study in the Vaccarès lagoon (Camargue, France). Chemosphere 65: 1846–1858.PubMedCrossRefGoogle Scholar
  12. Calow, P., 1991. Physiological costs of combating chemical toxicants: ecological implications. Comparative Physiology and Biochemistry, Part C 100: 3–6.CrossRefGoogle Scholar
  13. Cazenave, J., C. Bacchetta, M. J. Parma, P. A. Scarabotti & D. A. Wunderlin, 2009. Multiple biomarkers responses in Prochilodus lineatus allowed assessing changes in the water quality of Salado River basin (Santa Fe, Argentina). Environmental Pollution 157: 3025–3033.PubMedCrossRefGoogle Scholar
  14. Chevenet, F., S. Dolédec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.CrossRefGoogle Scholar
  15. Cobo, F., A. Mera & M. A. González, 1999. Análisis químico y valor energético de algunas familias de insectos heterometábolos dulceacuícolas. Boletín de la Asociación Española de Entomología 23: 213–221.Google Scholar
  16. Cobo, F., A. Mera & M. A. González, 2000. Análisis químico y contenido energético de algunas familias de insectos holometábolos dulceacuícolas. Nova Acta Científica Compostelana (Bioloxía) 10: 1–12.Google Scholar
  17. Cummins, K. W. & J. C. Wuycheck, 1971. Caloric equivalents for investigations in ecological energetics. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 18: 1–158.Google Scholar
  18. deBruyn, A. M. H. & J. B. Rasmussen, 2002. Quantifying assimilation of sewage-derived organic matter by riverine benthos. Ecological Applications 12: 511–520.CrossRefGoogle Scholar
  19. deBruyn, A. M. H., D. J. Marcogliese & J. B. Rasmussen, 2003. The role of sewage in a large river food web. Canadian Journal of Fisheries and Aquatic Sciences 60: 1332–1344.CrossRefGoogle Scholar
  20. de Crespin de Billy, V., 2001. Régime alimentaire de la truite (Salmo trutta L.) en eaux courantes: rôles de l'habitat physique des traits des macroinvertébrés. Thesis. L'université Claude Bernard, Lyon: 84 pp.Google Scholar
  21. de Crespin de Billy, V. & P. Usseglio-Polatera, 2002. Traits of brown trout prey in relation to habitat characteristics and benthic invertebrate communities. Journal of Fish Biology 60: 687–714.CrossRefGoogle Scholar
  22. Deegan, L. A. & B. J. Peterson, 1992. Whole-river fertilization stimulates fish production in an arctic tundra river. Canadian Journal of Fisheries and Aquatic Sciences 49: 1890–1901.CrossRefGoogle Scholar
  23. de Pedro, N., M. J. Delgado, B. Gancedo & M. Alonso-Bedate, 2003. Changes in glucose, glycogen, thyroid activity and hypothalamic catecholamines in tench by starvation and refeeding. Journal of Comparative Physiology B 173: 475–481.CrossRefGoogle Scholar
  24. Díaz-Fierros, T. F., J. Puerta, J. Suarez & V. F. Díaz-Fierros, 2002. Contaminant loads of CSOs at the wastewater treatment plant of a city in NW Spain. Urban Water 4: 291–299.CrossRefGoogle Scholar
  25. Dickens, C. W. S. & P. M. Graham, 1998. Biomonitoring for effective management of wastewater discharges and the health of the river environment. Aquatic Ecosystem Health & Management 1: 199–217.CrossRefGoogle Scholar
  26. Diniz, M. S., R. Pereira, A. C. Freitas, T. A. P. Rocha-Santos, L. Castro, I. Peres & A. C. Duarte, 2011. Evaluation of the sub-lethal toxicity of bleached kraft pulp mill effluent to Carassius auratus and Dicentrarchus labrax. Water, Air, and Soil pollution 217: 35–45.CrossRefGoogle Scholar
  27. Dutta, H. M., N. K. Adhikari, P. K. Singh & J. S. Munshi, 1993. Histopathological changes induced by Malathion in the liver of a freshwater catfish, Heteropneustes fossilis (Bloch). Bulletin of Environmental Contamination and Toxicology 51: 895–900.PubMedCrossRefGoogle Scholar
  28. Esteban, S., Y. Valcárcel, M. Catalá & M. González-Castromil, 2012. Psychoactive pharmaceutical residues in the watersheds of Galicia (Spain). Gaceta Sanitaria. doi: 10.1016/j.gaceta.2012.01.018.Google Scholar
  29. Ferrando, M. D. & E. Andreu-Moliner, 1992. Lindane-induced changes in carbohydrate metabolism in Anguilla anguilla. Comparative Physiology and Biochemistry, Part C 101: 437–441.CrossRefGoogle Scholar
  30. Folmar, L. C., N. D. Denslow, V. Rao, M. Chow, D. A. Crain, J. Enblom, J. Marcino & L. J. Guillette Jr, 1996. Vitellogenin induction and reduced serum testosterone concentrations in feral male carp (Cyprinus carpio) captured near a major metropolitan sewage treatment plant. Environmental Health Perspectives 104: 1096–1101.PubMedCrossRefGoogle Scholar
  31. Forbes, T. L., V. E. Forbes, A. Giessing, R. Hansen & L. K. Kure, 1998. Relative role of pore water versus ingested sediment in bioavailability of organic contaminants in marine sediments. Environmental Toxicology and Chemistry 17: 2453–2462.CrossRefGoogle Scholar
  32. Gélineau, A., G. Corraze, T. Boujard, L. Larroquet & S. Kaushik, 2001. Relation between dietary lipid level and voluntary feed intake, growth, nutrient gain, lipid deposition and hepatic lipogenesis in rainbow trout. Reproduction, Nutrition, Development 41: 487–503.PubMedCrossRefGoogle Scholar
  33. Gimeno, L., M. D. Ferrando, S. Sánchez, L. O. Gimeno & E. Andreu, 1995. Pesticide effects on eel metabolism. Ecotoxicology and Environmental Safety 31: 153–157.PubMedCrossRefGoogle Scholar
  34. Gingerich, A. J., D. P. Philipp & C. D. Suski, 2010. Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish. Journal of Comparative Physiology B 180: 371–384.CrossRefGoogle Scholar
  35. Glover, C. N., D. Petri, K. E. Tollefsen, N. Jorum, R. D. Handy & M. H. G. Berntssen, 2007. Assessing the sensitivity of Atlantic salmon (Salmo salar) to dietary endosulfan exposure using tissue biochemistry and histology. Aquatic Toxicology 84: 346–355.PubMedCrossRefGoogle Scholar
  36. Glusczak, L., D. S. Miron, B. S. Moraes, R. R. Simoes, M. R. C. Schetinger, V. M. Morsch & V. L. Loro, 2007. Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comparative Physiology and Biochemistry, Part C 146: 519–524.Google Scholar
  37. González, M. A. & F. Cobo, 2006. Macroinvertebrados de las aguas dulces de Galicia. Hércules de Ediciones: 173 pp.Google Scholar
  38. Guilpart, A., J. M. Roussel, J. Aubin, T. Caquet, M. Marle & H. Le Bris, 2012. The use of benthic invertebrate community and water quality analyses to assess ecological consequences of fish farm effluents in rivers. Ecological Indicators 23: 356–365.CrossRefGoogle Scholar
  39. Haluzová, I., H. Modrá, J. Blahová, M. Havelková, Z. Široká & Z. Svobodová, 2011. Biochemical markers of contamination in fish toxicity tests. Interdisciplinary Toxicology 4: 85–89.PubMedCrossRefGoogle Scholar
  40. Harries, J. E., A. Janbakhsh, S. Jobling, P. Matthiessen, J. P. Sumpter & C. R. Tyler, 1999. Estrogenic potency of effluent from two sewage treatment works in the United Kingdom. Environmental Toxicology and Chemistry 18: 932–937.CrossRefGoogle Scholar
  41. Health, A. G., 1995. Water Pollution and Fish Physiology, 2nd ed. CRC Lewis Publishers, Boca Raton.Google Scholar
  42. Hellawell, J. M., 1986. Biological Indicators of Freshwater Pollution and Environmental Management. Elsevier Applied Science Publishers, London; New York.Google Scholar
  43. Hynes, H. B. N., 1960. The Biology of Polluted Waters. Liverpool University Press, Liverpool.Google Scholar
  44. Johnson, P. T. J. & S. H. Paull, 2011. The ecology and emergence of diseases in fresh waters. Freshwater Biology 56: 638–657.CrossRefGoogle Scholar
  45. Johnson, P. T. J., A. R. Townsend, C. C. Cleveland, P. M. Gilbert, R. W. Howarth, V. J. McKenzie, E. Rejmankova & M. H. Ward, 2010. Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecological Applications 20: 16–29.PubMedCrossRefGoogle Scholar
  46. Khan, R. A., 2003. Health of flatfish from localities in Placentia Bay, Newfoundland, contaminated with petroleum and PCBs. Archives of Environmental Contamination and Toxicology 44: 485–492.PubMedCrossRefGoogle Scholar
  47. Kopecka-Pilarczyk, J. & A. D. Correia, 2009. Biochemical response in gilthead seabream (Sparus aurata) to in vivo exposure to pyrene and fluorene. Journal of Experimental Marine Biology and Ecology 372: 49–57.CrossRefGoogle Scholar
  48. Kori-Siakpere, O., K. M. Adamu & J. A. Achakpockri, 2007. Sublethal effects of paraquat on plasma glucose levels and glycogen reserves in the liver and muscle tissues of African catfish (Clarias gariepinus) under laboratory condition. Journal of Fisheries and Aquatic Science 2: 243–247.CrossRefGoogle Scholar
  49. Lahr, J., R. V. Kuiper, A. van Mullem, B. L. Verboom, J. Jol, P. Schout, G. C. M. Grinwis, T. Rouhani Rankouhi, J. P. F. Pieters, A. A. M. Gerritsen, J. P. Giesy & A. D. Vethaak, 2006. A field survey of estrogenic effects in freshwater and marine fish in the Netherlands (Chapt. 7.). In Vethaak, A. D., S. M. Schrap & P. de Voogt (eds), Estrogens and Xenoestrogens in the Aquatic Environment: an Integrated Approach for Field Monitoring and Effect Assessment. SETAC Technical Publications Series, Pensacola, FL: 151–178.Google Scholar
  50. Lawrence, A. J., A. Arukwe, M. Moore, M. Sayer & J. Thain, 2003. Molecular/cellular processes and the physiological response to pollution. In Lawrence, A. J. & K. L. Hemingway (eds), Effects of Pollution on Fish: Molecular Effects and Population Responses. Science Blackwell Science Ltd., Oxford: 83–133.CrossRefGoogle Scholar
  51. Leppänen, M., 1995. The role of feeding behaviour in bioaccumulation of organic chemicals in benthic organisms. Annales Zoologici Fennici 32: 247–255.Google Scholar
  52. Levesque, H. M., T. W. Moon, P. G. C. Campbell & A. Hontela, 2002. Seasonal variation in carbohydrate and lipid metabolism of yellow perch (Perca flavescens) chronically exposed to metals in the field. Aquatic Toxicology 60: 257–267.PubMedCrossRefGoogle Scholar
  53. Li, Z.-H., V. Zlabek, P. Li, R. Grabic, J. Velisek, J. Machova & T. Randak, 2010a. Biochemical and physiological responses in liver and muscle of rainbow trout after long-term exposure to propiconazole. Ecotoxicology and Environmental Safety 73: 1391–1396.PubMedCrossRefGoogle Scholar
  54. Li, Z.-H., V. Zlabek, J. Velisek, R. Grabic, J. Machova & T. Randak, 2010b. Physiological condition status and muscle-based biomarkers in rainbow trout (Oncorhynchus mykiss), after long-term exposure to carbamazepine. Journal of Applied Toxicology 30: 197–203.PubMedGoogle Scholar
  55. Lillenberg, M., S. Yurchenko, K. Kipper, K. Herodes, V. Pihl, R. Lõhmus, M. Ivask, A. Kuu, S. Kutti, S. V. Litvin & L. Nei, 2010. Presence of fluoroquinolones and sulfonamides in urban sewage sludge and their degradation as a result of composting. International Journal of Environmental Science and Technology 7: 307–312.Google Scholar
  56. Maceda-Veiga, A., M. Monroy, G. Viscor & A. De Sostoa, 2010. Changes in non-specific biomarkers in the Mediterranean barbel (Barbus meridionalis) exposed to sewage effluents in a Mediterranean stream (Catalonia, NE Spain). Aquatic Toxicology 100: 229–237.PubMedCrossRefGoogle Scholar
  57. Maes, G. E., J. A. M. Raeymaekers, C. Pampoulie, A. Seynaeve, G. Goemans, C. Belpaire & F. A. Volckaert, 2005. The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: relationship between heavy metal bioaccumulation, condition and genetic variability. Aquatic Toxicology 73: 99–114.PubMedCrossRefGoogle Scholar
  58. McKenzie, D. J., A. Shingles, G. Claireaux & P. Domenici, 2009. Sublethal concentrations of ammonia impair performance of the teleost fast-start escape response. Physiological and Biochemical Zoology 82: 353–362.PubMedCrossRefGoogle Scholar
  59. Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America, 3rd edn. Kendall/Hunt Publishing Company, Iowa.Google Scholar
  60. Miller, R. B., A. C. Sinclair & P. W. Hochachka, 1959. Diet, glycogen reserves and resistance to fatigue in hatchery rainbow trout. Journal of the Fisheries Research Board of Canada 16: 321–328.CrossRefGoogle Scholar
  61. Moiseenko, T. I., 2000. Morphophysiological rearrangements in fish in response to pollution (in the Light of S.S. Shvarts’ Theory). Russian Journal of Ecology 31: 429–438.CrossRefGoogle Scholar
  62. Niimi, A. J., 1996. Evaluation of PCBs and PCDD/Fs retention by aquatic organisms. Science of the Total Environment 192: 123–150.CrossRefGoogle Scholar
  63. Ortega, V. A., K. J. Renner & N. J. Bernier, 2005. Appetite-suppressing effects of ammonia exposure in rainbow trout associated with regional and temporal activation of brain monoaminergic and CRF systems. Journal of Experimental Biology 208: 1855–1866.PubMedCrossRefGoogle Scholar
  64. Oscoz, J., P. M. Leunda, F. Campos, M. C. Escala & R. Miranda, 2005. Diet of 0 + brown trout (Salmo trutta L., 1758) from the river Erro (Navarra, North of Spain). Limnetica 24: 319–326.Google Scholar
  65. Palermo, F. A., G. Mosconi, M. Angeletti & A. M. Polzonetti-Magni, 2008. Assessment of water pollution in the Tronto river (Italy) by applying useful biomarkers in the fish model Carassius auratus. Archives of Environmental Contamination and Toxicology 55: 295–304.PubMedCrossRefGoogle Scholar
  66. Peng, X., Z. Wang, C. Yang, F. Chena & B. Maia, 2006. Simultaneous determination of endocrine-disrupting phenols and steroid estrogens in sediment by gas chromatography–mass spectrometry. Journal of Chromatography A 1116: 51–56.PubMedCrossRefGoogle Scholar
  67. Pignatello, J. J. & B. S. Xing, 1996. Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science and Technology 30: 1–11.CrossRefGoogle Scholar
  68. Porter, C. M. & D. M. Janz, 2003. Treated municipal sewage discharge affects multiple levels of biological organization in fish. Ecotoxicology and Environmental Safety 54: 199–206.PubMedCrossRefGoogle Scholar
  69. Petri, D., C. N. Glover, S. Ylving, K. Kolås, G. Fremmersvik, R. Waagbø & M. H. Berntssen, 2006. Sensitivity of Atlantic salmon (Salmo salar) to dietary endosulfan as assessed by haematology, blood biochemistry, and growth parameters. Aquatic Toxicology 80: 207–216.PubMedCrossRefGoogle Scholar
  70. Ravera, O., 2001. Monitoring of the aquatic environment by species accumulator of pollutants: a review. Journal of Limnology 60: 63–78.CrossRefGoogle Scholar
  71. Roche, H., A. Buet & F. Ramade, 2002. Relationships between persistent organic chemicals residues and biochemical constituents in fish from a protected area: the French National Nature Reserve of Camargue. Comparative Physiology and Biochemistry, Part C 133: 393–410.Google Scholar
  72. Rodgers-Gray, T. P., S. Jobling, C. Kelly, S. Morris, G. Brighty, M. J. Waldock, J. P. Sumpter & C. R. Tyler, 2001. Exposure of juvenile roach (Rutilus rutilus) to treated sewage effluent induces dose-dependent and persistent disruption in gonadal duct development. Environmental Science and Technology 35: 462–470.PubMedCrossRefGoogle Scholar
  73. Sánchez-Hernández, J., R. Vieira-Lanero, M. J. Servia & F. Cobo, 2011. Feeding habits of four sympatric fish species in the Iberian Peninsula: keys to understanding coexistence using prey traits. Hydrobiologia 667: 119–132.CrossRefGoogle Scholar
  74. Sancho, E., M. D. Ferrando & E. Andreu, 1998. Effects of sublethal exposure to a pesticide on levels of energetic compounds in Anguilla anguilla. Journal of Environmental Science and Health, Part B 33: 411–424.CrossRefGoogle Scholar
  75. Schmidt-Posthaus, H., D. Bernet, T. Wahli & P. Burkhardt-Holm, 2001. Morphological organ alterations and infectious diseases in brown trout, Salmo trutta, and rainbow trout, Oncorhynchus mykiss, exposed to polluted river water. Diseases of Aquatic Organisms 44: 161–170.PubMedCrossRefGoogle Scholar
  76. Seifter, J., 1950. Studies on the pharmacology and toxicology of testicular hyaluronidase. Annals of the New York Academy of Sciences 52: 1141–1155.PubMedCrossRefGoogle Scholar
  77. Servia, M. J., F. Cobo & M. A. González, 2000. Seasonal and interannual variations in the frequency and severity of deformities in larvae of Chironomus riparius (Meigen, 1804) and Prodiamesa olivacea (Meigen, 1818) (Diptera, Chironomidae) collected in a polluted site. Environmental Monitoring and Assessment 64: 617–626.CrossRefGoogle Scholar
  78. Servia, M. J., F. Cobo & M. A. González, 2004. Effects of short-term climatic variations on fluctuating asymmetry levels in Chironomus riparius larvae at a polluted site. Hydrobiologia 523: 137–147.CrossRefGoogle Scholar
  79. Servia, M. J., A. R. R. Péry, M. Heydorff, J. Garric & L. Lagadic, 2006. Effects of copper on energy metabolism and larval development in the midge Chironomus riparius. Ecotoxicoly 15: 229–240.CrossRefGoogle Scholar
  80. Sharpe, S. & D. Mackay, 2000. A framework for evaluating bioaccumulation in food webs. Environmental Science and Technology 34: 2373–2379.CrossRefGoogle Scholar
  81. Shingles, A., D. J. McKenzie, E. W. Taylor, A. Moretti, P. J. Butler & S. Ceradini, 2001. Effects of sublethal ammonia exposure on swimming performance in rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology 204: 2691–2698.PubMedGoogle Scholar
  82. Siegel, S. & N. J. Castellan, 1988. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill Inc., New York.Google Scholar
  83. Slavik, K., B. J. Peterson, L. A. Deegan, W. B. Bowden, A. E. Hershey & J. E. Hobbie, 2004. Long-term responses of the Kuparuk river ecosystem to phosphorus fertilization. Ecology 85: 939–954.CrossRefGoogle Scholar
  84. Speranza, E. D. & J. C. Colombo, 2009. Biochemical composition of a dominant detritivorous fish Prochilodus lineatus along pollution gradients in the Paraná-Río de la Plata Basin. Journal of Fish Biology 74: 1226–1244.PubMedCrossRefGoogle Scholar
  85. Strmac, M. & T. Braunbeck, 1999. Effects of triphenyltin acetate on survival, hatching success, and liver ultrastructure of early life stages of zebrafish (Brachydanio rerio). Ecotoxicology and Environmental Safety 44: 25–39.PubMedCrossRefGoogle Scholar
  86. Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2002. Invertébrés d’eau douce. Systématique, biologie, écologie. CNRS edition, Paris.Google Scholar
  87. Tello, A., R. A. Corner & Tl. C. Telfer, 2010. How do land-based salmonid farms affect stream ecology? Environmental Pollution 158: 1147–1158.PubMedCrossRefGoogle Scholar
  88. Tudorache, C., R. Blust & G. De Boeck, 2008. Social interactions, predation behaviour and fast start performance are affected by ammonia exposure in brown trout (Salmo trutta L.). Aquatic Toxicology 90: 145–153.PubMedCrossRefGoogle Scholar
  89. Van der Oost, R., J. Beyer & N. P. E. Vermeulen, 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology 13: 57–149.PubMedCrossRefGoogle Scholar
  90. Van Handel, E., 1965. Estimation of glycogen in small amounts of tissue. Analytical Biochemistry 11: 256–271.PubMedCrossRefGoogle Scholar
  91. Viluksela, M., M. Unkila, R. Pohjanvirta, J. T. Tuomisto, B. U. Stahl, K. K. Rozman & J. Tuomisto, 1999. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on liver phosphoenolpyruvate carboxykinase (PEPCK) activity, glucose homeostasis and plasma amino acid concentrations in the most TCDD-susceptible and the most TCDD-resistant rat strains. Archives of Toxicology 73: 323–336.PubMedCrossRefGoogle Scholar
  92. Walter, G. L., P. D. Jones & J. P. Giesy, 2000. Pathologic alterations in adult rainbow trout, Oncorhynchus mykiss, exposed to dietary 2,3,7,8-tetrachlorodibenzo-p-dioxin. Aquatic Toxicology 50: 287–299.PubMedCrossRefGoogle Scholar
  93. White, A. & T. C. Fletcher, 1985. Seasonal changes in serum glucose and condition of the plaice. Pleuronectes platessa L. Journal of Fish Biology 26: 755–764.CrossRefGoogle Scholar
  94. Wicks, B. J. & D. J. Randall, 2002. The effect of feeding and fasting on ammonia toxicity in juvenile rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology 59: 71–82.PubMedCrossRefGoogle Scholar
  95. Wicks, B. J., R. Joensen, Q. Tang & D. J. Randall, 2002. Swimming and ammonia toxicity in salmonids: the effect of sublethal ammonia exposure on the swimming performance of coho salmon and the acute toxicity of ammonia in swimming and resting rainbow trout. Aquatic Toxicology 59: 55–69.PubMedCrossRefGoogle Scholar
  96. Wood, C. M., 2004. Dogmas and controversies in the handling of nitrogenous wastes: is exogenous ammonia a growth stimulant in fish? Journal of Experimental Biology 207: 2043–2054.PubMedCrossRefGoogle Scholar
  97. Yeom, D.-H., S.-A. Lee, G. S. Kang, J. Seo & S.-K. Lee, 2007. Stressor identification and health assessment of fish exposed to wastewater effluents in Miho Stream, South Korea. Chemosphere 67: 2282–2292.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Fernando Cobo
    • 2
    • 3
  • Javier Sánchez-Hernández
    • 2
    • 3
  • Rufino Vieira-Lanero
    • 2
  • María J. Servia
    • 1
  1. 1.Department of Animal Biology, Vegetal Biology and Ecology, Faculty of ScienceUniversity of A CoruñaCoruñaSpain
  2. 2.Station of Hydrobiology “Encoro do Con”Vilagarcía de Arousa, PontevedraSpain
  3. 3.Department of Zoology and Physical Anthropology, Faculty of BiologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations