Hydrobiologia

, Volume 703, Issue 1, pp 149–164

Benthic indicators of sediment quality associated with run-of-river reservoirs

  • Colas Fanny
  • Archaimbault Virginie
  • Férard Jean-François
  • Bouquerel Jonathan
  • Roger Marie-Claude
  • Devin Simon
Primary Research Paper

Abstract

Freshwater ecosystems have been fragmented by the construction of large numbers of dams. In addition to disruption of ecological continuity and physical disturbance downstream, accumulation of large amounts of sediment within run-of-river reservoirs constitutes a latent ecotoxic risk to aquatic communities. To date, run-of-river reservoirs and ecotoxic risks associated with contaminated sediment to the biodiversity and functioning of such systems are little studied. Therefore, the main objective of this study was to describe macroinvertebrate assemblages, and the functioning of these systems, and to propose indicators of sediment contamination to integrate in in-situ risk assessment methodology. To identify specific assemblages of run-of-river reservoirs, we first compared macroinvertebrate assemblages and their biotrait profiles (i.e. from a database of biological and ecological traits) in reservoirs (n = 6) and associated river sites (upstream and downstream of dams). Then, we compared responses of assemblages and biotrait profiles to sediment contamination of the banks and channels of reservoirs to select the most useful spatial scale to identify sediment contamination. Nineteen indicator taxa were observed to be specifically associated with channel habitats of reservoirs. Among these, the abundance of three taxa (Tanypodinae (Diptera), Ephemerella (Ephemeroptera) and Atherix (Diptera)) revealed the effect of metal sediment contamination. “Between-reservoirs” differences in their biotrait profile were found along the contamination gradient, with a shift of communities’ composition and functionality, and an increase in functional similarity. Many traits (response traits), for example “maximum size”, “transverse distribution”, “substrate preferences”, “saprobity”, “temperature”, “resistance forms”, and “locomotion”, were specifically linked to contamination of sediments by metals. This study indicates how sediment contamination can change the structural and functional composition of run-of-river reservoir assemblages. Indicator taxa and response traits identified in this study could improve current risk assessment methodology and potentially enable prediction of the risks of contaminated sediments stored in reservoirs in downstream ecosystems.

Keywords

Run-of-river dams Macroinvertebrates Sediment contamination Indicator species Response traits 

References

  1. A.F.N.O.R., 2009. Qualité écologique des milieux aquatiques. Qualité de l’eau. Prélèvements des macro-invertébrés aquatiques en rivières peu profondes. In: Normalisation, A. F. d. (ed) norme homologuée T 90-333.Google Scholar
  2. Archaimbault, V., P. Usseglio-Polatera, J. Garric, J. G. Wasson & M. Babut, 2010. Assessing pollution of toxic sediment in streams using bio-ecological traits of benthic macroinvertebrates. Freshwater Biology 55(7): 1430–1446.CrossRefGoogle Scholar
  3. Armitage, P. D., M. J. Bowes & H. M. Vincent, 2007. Long-term changes in macroinvertebrate communities of a heavy metal polluted stream: the river Nent (Cumbria, UK) after 28 years. River Research and Applications 23(9): 997–1015.CrossRefGoogle Scholar
  4. Balmford, A., L. Bennun, B. ten Brink, D. Cooper, I. M. Côté, P. Crane, A. Dobson, N. Dudley, I. Dutton, R. E. Green, R. D. Gregory, J. Harrison, E. T. Kennedy, C. Kremen, N. Leader-Williams, T. E. Lovejoy, G. Mace, R. May, P. Mayaux, P. Morling, J. Phillips, K. Redford, T. H. Ricketts, J. P. Rodriguez, M. Sanjayan, P. J. Schei, A. S. van Jaarsveld & B. A. Walther, 2005. The Convention on Biological Diversity’s 2010 target. Science 307(5707): 212–213.PubMedCrossRefGoogle Scholar
  5. Beasley, G. & P. E. Kneale, 2003. Assessment of heavy metal and PAH contamination of urban streambed sediments on macroinvertebrates. Water, Air, & Soil Pollution: Focus 4(2–3): 563–578.Google Scholar
  6. Cain, D. J., S. N. Luoma, J. L. Carter & S. V. Fend, 1992. Aquatic insects as bioindicators of trace element contamination in cobble-bottom rivers and streams. Canadian Journal of Fisheries and Aquatic Sciences 49(10): 2141–2154.CrossRefGoogle Scholar
  7. Cairns, M. A., A. V. Nebeker, J. H. Gakstater & W. L. Griffis, 1984. Toxicity of copper-spiked sediments to freshwater invertebrates. Environmental Toxicology and Chemistry 3: 435–445.CrossRefGoogle Scholar
  8. Callier, M. D., M. Richard, C. W. McKindsey, P. Archambault & G. Desrosiers, 2009. Responses of benthic macrofauna and biogeochemical fluxes to various levels of mussel biodeposition: an in situ “benthocosm” experiment. Marine Pollution Bulletin 58(10): 1544–1553.PubMedCrossRefGoogle Scholar
  9. Calow, P. & V. E. Forbes, 2003. Peer Reviewed: does ecotoxicology inform ecological risk assessment? Environmental Science and Technology 37(7): 146A–151A.CrossRefGoogle Scholar
  10. Carignan, V. & M. A. Villard, 2002. Selecting indicator species to monitor ecological integrity: a review. Environmental Monitoring and Assessment 78(1): 45–61.PubMedCrossRefGoogle Scholar
  11. Casanoves, F., L. Pla, J. A. Di Rienzo & S. Díaz, 2010. FDiversity: a software package for the integrated analysis of functional diversity. Methods in Ecology and Evolution 2(3): 233–237.CrossRefGoogle Scholar
  12. Chapman, P. M., 1990. The sediment quality triad approach to determining pollution-induced degradation. Science of the Total Environment 97–98: 815–825.CrossRefGoogle Scholar
  13. Charvet, S., B. Statzner, P. Usseglio-Polatera & B. Dumont, 2001. Traits of benthic macroinvertebrates in semi-natural French streams: an initial application to biomonitoring in Europe. Freshwater Biology 43(2): 277–296.CrossRefGoogle Scholar
  14. Chessel, D., A. B. Dufour & J. Thioulouse, 2004. The ade4 package-I: one-table methods. R News 4(1): 5–10.Google Scholar
  15. Clements, W. H., 1994. Benthic invertebrate community responses to heavy metals in the Upper Arkansas River Basin, Colorado. Journal of the North American Benthological Society 13(1): 30–44.CrossRefGoogle Scholar
  16. Colas, F., V. Archaimbault & S. Devin, 2011. Scale-dependency of macroinvertebrate communities: responses to contaminated sediments within run-of-river dams. Science of the Total Environment 409(7): 1336–1343.PubMedCrossRefGoogle Scholar
  17. Culp, J. M., D. G. Armanini, M. J. Dunbar, J. M. Orlofske, N. L. Poff, A. I. Pollard, A. G. Yates & G. C. Hose, 2010. Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction. Integrated Environmental Assessment and Management 7(2): 187–197.PubMedCrossRefGoogle Scholar
  18. Dahlbäck, B. & L. A. H. Gunnarson, 1981. Sedimentation and sulfate reduction under a mussel culture. Marine Biology 63(3): 269–275.CrossRefGoogle Scholar
  19. De Cãceres, M. & P. Legendre, 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90(12): 3566–3574.PubMedCrossRefGoogle Scholar
  20. Dolédec, S. & B. Statzner, 2008. Invertebrate traits for the biomonitoring of large European rivers: an assessment of specific types of human impact. Freshwater Biology 53(3): 617–634.CrossRefGoogle Scholar
  21. Ducrot, V., P. Usseglio-Polatera, A. R. R. Péry, J. Mouthon, M. Lafont, M. C. Roger, J. Garric & J. F. Férard, 2005. Using aquatic macroinvertebrate species traits to build test batteries for sediment toxicity assessment: accounting for the diversity of potential biological responses to toxicants. Environmental Toxicology and Chemistry 24(9): 2306–2315.PubMedCrossRefGoogle Scholar
  22. Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67(3): 345–366.Google Scholar
  23. Elosegi, A., J. Díez & M. Mutz, 2010. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 657(1): 199–215.CrossRefGoogle Scholar
  24. Escher, B. I. & J. L. M. Hermens, 2002. Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environmental Science and Technology 36(20): 4201–4217.PubMedCrossRefGoogle Scholar
  25. Estebe, A., D. R. Thevenot, H. Boudries & J. M. Mouchel, 1997. Urban runoff impacts on particulate metal and hydrocarbon concentrations in river Seine: suspended solid and sediment transport. Water Science and Technology 36(8–9): 185–193.CrossRefGoogle Scholar
  26. Forbes, V. E., P. Calow & R. M. Sibly, 2001. Are current species extrapolation models a good basis for ecological risk assessment? Environmental Toxicology and Chemistry 20(2): 442–447.PubMedCrossRefGoogle Scholar
  27. Free, G., A. Solimini, B. Rossaro, L. Marziali, R. Giacchini, B. Paracchini, M. Ghiani, S. Vaccaro, B. Gawlik, R. Fresner, G. Santner, M. Schönhuber & A. Cardoso, 2009. Modelling lake macroinvertebrate species in the shallow sublittoral: relative roles of habitat, lake morphology, aquatic chemistry and sediment composition. Hydrobiologia 633(1): 123–136.CrossRefGoogle Scholar
  28. Griswold, M. W., R. W. Berzinis, T. L. Crisman & S. W. Golladay, 2008. Impacts of climatic stability on the structural and functional aspects of macroinvertebrate communities after severe drought. Freshwater Biology 53(12): 2465–2483.CrossRefGoogle Scholar
  29. Gurrieri, J. T., 1998. Distribution of metals in water and sediment and effects on aquatic biota in the upper Stillwater River basin. Montana. Journal of Geochemical Exploration 64(1–3): 83–100.CrossRefGoogle Scholar
  30. Harrison, S. S. C. & A. G. Hildrew, 2001. Epilithic communities and habitat heterogeneity in a lake littoral. Journal of Animal Ecology 70(4): 692–707.CrossRefGoogle Scholar
  31. Heilskov, A. C. H. & M. Holmer, 2001. Effects of benthic fauna on organic matter mineralization in fish-farm sediments: importance of size and abundance. ICES Journal of Marine Science 58(2): 427–434.CrossRefGoogle Scholar
  32. Heino, J., 2000. Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia 418(1): 229–242.CrossRefGoogle Scholar
  33. Ippolito, A., R. Todeschini & M. Vighi, 2012. Sensitivity assessment of freshwater macroinvertebrates to pesticides using biological traits. Ecotoxicology 21(2): 336–352.PubMedCrossRefGoogle Scholar
  34. Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3(2): 157–164.CrossRefGoogle Scholar
  35. Koivisto, S., M. Ketola & M. Walls, 1992. Comparison of five cladoceran species in short- and long-term copper exposure. Hydrobiologia 248(2): 125–136.CrossRefGoogle Scholar
  36. Lafont, M., L. Grapentine, Q. Rochfort, J. Marsalek, G. Tixier & P. Breil, 2007. Bioassessment of wet-weather pollution impacts on fine sediments in urban waters by benthic indices and the sediment quality triad. Water Science and Technology 56(9): 13–20.PubMedCrossRefGoogle Scholar
  37. Larsen, S., I. P. Vaughan & S. J. Ormerod, 2009. Scale-dependent effects of fine sediments on temperate headwater invertebrates. Freshwater Biology 54(1): 203–219.CrossRefGoogle Scholar
  38. Larsen, S., G. Pace & S. J. Ormerod, 2011. Experimental effects of sediment deposition on the structure and function of macroinvertebrate assemblages in temperate streams. River Research and Applications 27(2): 257–267.CrossRefGoogle Scholar
  39. Leung, K. M. Y., J. S. Gray, W. K. Li, G. C. S. Lui, Y. Wang & P. K. S. Lam, 2005. Deriving sediment quality guidelines from field-based species sensitivity distributions. Environmental Science and Technology 39(14): 5148–5156.PubMedCrossRefGoogle Scholar
  40. Marquès, M. J., E. Martinez-Conde & J. V. Rovira, 2003. Effects of zinc and lead mining on the benthic macroinvertebrates of a fluvial ecosystem. Water, Air, and Soil pollution 148(1): 363–388.CrossRefGoogle Scholar
  41. McGeoh, M. A. & S. L. Chown, 1998. Scaling up the value of bioindicators. Trends in Ecology & Evolution 13(2): 46–47.CrossRefGoogle Scholar
  42. McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21(4): 178–185.CrossRefGoogle Scholar
  43. Mousavi, K. S., R. Primicerio & P. A. Amundsen, 2003. Diversity and structure of Chironomidae (Diptera) communities along a gradient of heavy metal contamination in a subarctic watercourse. The Science of the Total Environment 307(1–3): 93–110.PubMedGoogle Scholar
  44. Naiman, R. J. & H. Décamps, 1997. The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics 28: 621–658.CrossRefGoogle Scholar
  45. Nebeker, A. V., M. A. Cairns, J. H. Gakstatter, K. W. Malueg, G. S. Schuytema & D. F. Krawczyk, 1984. Biological methods for determining toxicity of contaminated freshwater sediments to invertebrates. Environmental Toxicology and Chemistry 3(4): 617–630.CrossRefGoogle Scholar
  46. Niemi, G. J. & M. E. McDonald, 2004. Application of ecological indicators. Annual Review of Ecology Evolution and Systematics 35: 89–111.CrossRefGoogle Scholar
  47. Noss, R. F., 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology 4: 335–364.Google Scholar
  48. Petchey, O. L. & K. J. Gaston, 2002. Functional diversity (FD), species richness and community composition. Ecology Letters 5(3): 402–411.CrossRefGoogle Scholar
  49. Petchey, O. L. & K. J. Gaston, 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9(6): 741–758.PubMedCrossRefGoogle Scholar
  50. Pond, G., 2010. Patterns of Ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia 641(1): 185–201.CrossRefGoogle Scholar
  51. Preuss, T. G., M. Telscher & H. T. Ratte, 2008. Life stage-dependent bioconcentration of a nonylphenol isomer in Daphnia magna. Environmental Pollution 156(3): 1211–1217.PubMedCrossRefGoogle Scholar
  52. Ramsey, P. W., M. C. Rillig, K. P. Feris, N. S. Gordon, J. N. Moore, W. E. Holben & J. E. Gannon, 2005. Relationship between communities and processes, new insights from a field study of a contaminated ecosystem. Ecology Letters 8: 1201–1210.PubMedCrossRefGoogle Scholar
  53. Richardson, J. S. & P. M. Kiffney, 2000. Responses of a macroinvertebrate community from a pristine, southern British Columbia, Canada, stream to metals in experimental mesocosms. Environmental Toxicology and Chemistry 19(3): 736–743.CrossRefGoogle Scholar
  54. Rosenberg, D. M. & V. H. Resh, 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York.Google Scholar
  55. Rubach, M. N., R. Ashauer, D. B. Buchwalter, H. J. De Lange, M. Hamer, T. G. Preuss, K. Töpke & S. J. Maund, 2011. Framework for traits-based assessment in ecotoxicology. Integrated Environmental Assessment and Management 7(2): 172–186.PubMedCrossRefGoogle Scholar
  56. Schmera, D., T. Erős & J. Podani, 2009. A measure for assessing functional diversity in ecological communities. Aquatic Ecology 43(1): 157–167.CrossRefGoogle Scholar
  57. Snook, D. L. & A. M. Milner, 2002. Biological traits of macroinvertebrates and hydraulic conditions in a glacier-fed catchment (French Pyrenees). Archiv für Hydrobiologie 153(2): 254–271.Google Scholar
  58. Spromberg, J. A. & W. J. Birge, 2005. Modeling the effects of chronic toxicity on fish populations: the influence of life-history strategies. Environmental Toxicology and Chemistry 24(6): 1532–1540.PubMedCrossRefGoogle Scholar
  59. Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2000. Invertébrés d’eau douce. Systématique, Biologie, Écologie. CNRS Editions, Paris.Google Scholar
  60. Team, R. D. C., 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
  61. Thioulouse, J., D. Chessel, S. Dolédec & J.-M. Olivier, 1997. ADE-4: a multivariate analysis and graphical display software. Statistics and Computing 7(1): 75–83.CrossRefGoogle Scholar
  62. Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biomonitoring through biological traits of benthic macroinvertebrates: how to use species trait databases? Hydrobiologia 422(423): 153–162.CrossRefGoogle Scholar
  63. Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, E. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116: 882–892.CrossRefGoogle Scholar
  64. Walker, B. H. & J. L. Langridge, 2002. Measuring functional diversity in plant communities with mixed life forms: a problem of hard and soft attributes. Ecosystems 5(6): 529–538.CrossRefGoogle Scholar
  65. Walker, B., A. Kinzig & J. Langridge, 1999. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2: 95–113.CrossRefGoogle Scholar
  66. Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41(1): 115–139.PubMedCrossRefGoogle Scholar
  67. Winner, R. W., M. W. Boesel & M. P. Farrell, 1980. Insect community structure as an index of heavy-metal pollution in lotic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 37(4): 647–655.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Colas Fanny
    • 1
  • Archaimbault Virginie
    • 2
  • Férard Jean-François
    • 1
  • Bouquerel Jonathan
    • 1
  • Roger Marie-Claude
    • 2
  • Devin Simon
    • 1
  1. 1.Laboratoire des Interactions Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146Université de LorraineMetzFrance
  2. 2.DYNAMIRSTEA LyonLyon Cedex 09France

Personalised recommendations