Advertisement

Hydrobiologia

, Volume 704, Issue 1, pp 115–126 | Cite as

Water colour, phosphorus and alkalinity are the major determinants of the dominant phytoplankton species in European lakes

  • Kairi MailehtEmail author
  • Tiina Nõges
  • Peeter Nõges
  • Ingmar Ott
  • Ute Mischke
  • Laurence Carvalho
  • Bernard Dudley
WATER BODIES IN EUROPE

Abstract

Analysis of phytoplankton data from about 1,500 lakes in 20 European countries has revealed that two-thirds of the species that dominate lakes during the summer are dominant right across Europe. Using Canonical Correspondence Analyses, we have examined how both habitat conditions within lakes and environmental factors over broad geographical scales explained the distribution of the 151 most common summer dominant species. The distributions of these species were best explained by water colour and latitude, although alkalinity and total phosphorus also appeared to be important explanatory factors. Contrary to our original hypothesis, summer water temperatures had a negligible impact on the distribution of dominants, although, due to the restricted summer season we examined, only a limited temperature gradient was present in the dataset. Cryptophytes occurred more frequently among dominants in Northern Europe whereas cyanobacteria and dinophytes dominated more in Central and Southern Europe. Our analyses suggest that besides nutrient concentrations, other water chemistry variables, such as alkalinity and the content of humic substances, have at least as important a role in determining the distribution of the dominant phytoplankton species in European lakes.

Keywords

WISER Project Geographical gradients Nutrients CCA Water temperature 

Notes

Acknowledgments

This paper is a result of the project WISER (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery) funded by the European Union under the 7th Framework Programme, Theme 6 (Environment including Climate Change) (contract No. 226273), www.wiser.eu. The results are based on a database collated as part of the WISER Project. We would like to thank Birger Skjelbred, Jannicke Moe and Bernard Dudley who supported data management and extraction and especially thank all the data providers. These include (figures in brackets give the number of water bodies): Mediterranean GIG (Data manager: Caridad de Hoyos, CEDEX-CEH). Spain: Ministerio de Agricultura, Alimentación y Medio Ambiente (122), Centro de Estudios Hidrográficos (CEDEX-CEH) (46). Italy: Università degli Studi di Sassari. Dipartimento di Scienze Botaniche, Ecologiche e Geologiche (DiSBEG) (18). Portugal: Instituto da Água, I.P. (INAG) (18). Romania: Ministeriul Meduli şi Pădurilor (MMP) (10). Cyprus: Ministry of Agriculture, Natural Resources and Environment, Water Development Department (MANRE-WDD) (7). France: Institut national de recherche en sciences et rechnologies pour l′environnement et l′agriculture (IRSTEA) (6). Greece: Maria Moustaka, Aristotle University of Thessaloniki. Central-Baltic GIG (Data manager: Ute Mischke, IGB) Estonia: Estonian University of Life Sciences (EMU) gathered for the state monitoring programme supported by the Estonian Ministry of Environment. Latvia: Sandra Poikane, Latvian Environment, Geology and Meteorology Centre. Lithuania—EPA Lithuania. Denmark: National Environmental Research Institute, University of Aarhus. Belgium: Jeroen Van Wichelen, Ghent University (UGENT). Netherlands: Rijkswaterstaat (RWS). Germany: Data from German water bodies were kindly provided by the following institutions of the German Federal States: Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg (LUGV; 127), Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Mecklenburg-Vorpommern (MLUV, Seenprogramm, 65), Landesbetrieb für Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt (LHW, 5), Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig–Holstein (LLUR, 13), Senatsverwaltung für Gesundheit, Soziales und Verbraucherschutz Berlin (SenGUV, 12), Niedersächsische Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN, Sulingen, 1). Poland: Data were provided partly by the Institute of Environmental Protection—National Research Institute. The Inspection for Environmental Protection provided data obtained within the framework of state environmental monitoring. Hungary: Environmental Protection Inspectorate for Trans-Tiszanian Region. Northern GIG (Data manager: Geoff Phillips, EA) Finland: Finnish Environment Institute (SYKE). Sweden: Swedish University of Agricultural Sciences (SLU). Norway: Norwegian Institute for Water Research (NIVA). United Kingdom—Scottish Environment Protection Agency (SEPA) and the Environment Agency for England & Wales (EA). Ireland: Environment Protection Agency (EPA).

Supplementary material

10750_2012_1348_MOESM1_ESM.xls (56 kb)
Electronic annex 1. Occurrence of the most dominant species in European countries (XLS 56 kb)

References

  1. Alster, A., R. N. Kaplan-Levy, A. Sukenik & T. Zohary, 2010. Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake. Hydrobiologia 639: 115–128.CrossRefGoogle Scholar
  2. Arvola., L., P. Eloranta, M. Järvinen, J. Keskitalo & A.-L. Holopainen, 1999. Food webs of humic waters. Phytoplankton. In J. Keskitalo & P. Eloranta (eds), Limnology of Humic Waters. Blackhyus Publishers, Leiden: 284 pp.Google Scholar
  3. Bouvy, M., N. Ba, S. Ka, S. Sane, M. Pagano & R. Arfi, 2006. Phytoplankton community structure and species assemblage succession in a shallow tropical lake (Lake Guiers, Senegal). Aquatic Microbial Ecology 45: 147–161.CrossRefGoogle Scholar
  4. Briand, J. F., C. Leboulanger, J. F. Humbert, C. Bernard & P. Dufour, 2004. Cylindrospermopsis raciborskii (cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming? Journal of Phycology 40: 231–238.CrossRefGoogle Scholar
  5. Canter-Lund, H. & J. W. G. Lund, 1995. Freshwater Algae: Their Microscopic World Explored. Biopress Ltd., Bristol: 360 pp.Google Scholar
  6. Carvalho, L., A. Solimini, G. Phillips, M. van den Berg, O.-P. Pietiläinen, A. Lyche, S. Poikane & U. Mischke, 2008. Chlorophyll reference conditions for European Intercalibration lake types. Aquatic Ecology 42: 203–211.CrossRefGoogle Scholar
  7. Carvalho, L., A. G. Solimini, G. Phillips, O.-P. Pietiläinen, J. Moe, A. C. Cardoso, A. Lyche Solheim, I. Ott, M. Sondergaard, G. Tartari & S. Rekolainen, 2009. Site-specific chlorophyll reference conditions for lakes in Northern and Western Europe. Hydrobiologia 633: 59–66.CrossRefGoogle Scholar
  8. CEN EN 15204, 2006. Water quality—Guidance standard for the routine analysis of phytoplankton abundance and composition using inverted microscopy (Utermöhl technique).Google Scholar
  9. Chapman, A. D. & C. L. Schelske, 1997. Recent appearance of Cylindrospermopsis (Cyanobacteria) in five hypereutrophic Florida lakes. Journal of Phycology 33: 191–195.CrossRefGoogle Scholar
  10. Cronberg, G. & H. Annadotter, 2006. Manual on Aquatic Cyanobacteria. A Photo Guide and Synopsis of Their Toxicology. ISSHA & UNESCO, Copenhagen: 106 pp.Google Scholar
  11. Dillard, G. E., 2008. Common Freshwater Algae of the United States. An Illustrated Key to the Genera (Excluding the Diatoms). Gebrüder Borntraeger, Berlin, Stuttgart: 188 pp.Google Scholar
  12. Directive, 2000. Directive of the European Parliament and of the Council 2000/60/EC establishing a framework for Community action in the field of water policy. Official Journal 2000 L 327/1, European Commission, Brussels.Google Scholar
  13. Dodson, S. I., S. E. Arnott & K. L. Cottingham, 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662–2679.CrossRefGoogle Scholar
  14. Duarte, C. M., S. Agusti & D. E. Canfield Jr, 1992. Patterns in phytoplankton community structure in Florida lakes. Limnology and Oceanography 37: 155–161.CrossRefGoogle Scholar
  15. Fabbro, L. D. & L. J. Duivenvoorden, 1996. Profile of a bloom of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju in the Fitzroy River in tropical central Queensland. Marine and Freshwater Research 47: 685–694.CrossRefGoogle Scholar
  16. Fastner, J., J. Rucker, A. Stuken, K. Preußel, B. Nixdorf, I. Chorus, A. Köhler & C. Wiedner, 2007. Occurrence of the cyanobacterial toxin cylindrospermopsin in northeast Germany. Environmental Toxicology 22: 26–32.PubMedCrossRefGoogle Scholar
  17. Figueroa, R. I. & K. Rengefors, 2006. Life cycle and sexuality of the freshwater raphidophyte Gonyostomum semen (Raphidophyceae). Journal of Phycology 42: 859–871.CrossRefGoogle Scholar
  18. Flöder, S., S. Jaschinski, G. Wells & C. W. Burns, 2010. Dominance and compensatory growth in phytoplankton communities under salinity stress. Journal of Experimental Marine Biology and Ecology 395: 223–231.CrossRefGoogle Scholar
  19. Gomes, N., P. R. Hualde, M. Licursi & D. E. Bauer, 2004. Spring phytoplankton of Rio de la Plata: a temperate estuary of South America. Estuarine Coastal & Shelf Science 61: 301–309.CrossRefGoogle Scholar
  20. Grime, J. P., 1979. Plant Strategies and Vegetation Processes. Wiley, New York: 222 pp.Google Scholar
  21. Grime, J. P., 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86: 901–910.CrossRefGoogle Scholar
  22. Hausmann, S. & A. F. Lotter, 2001. Morphological variation within Cyclotella comensis Grunow and its importance for quantitative temperature reconstructions. Freshwater Biology 46: 1323–1333.CrossRefGoogle Scholar
  23. Hering, D., A. Borja, L. Carvalho & C. K. Feld, 2012. Assessment and recovery of European water bodies: key messages from the WISER project. Hydrobiologia, this issue.Google Scholar
  24. Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.CrossRefGoogle Scholar
  25. Kokociński, M., K. Stefaniak, J. Mankiewicz-Boczek, K. Izydorczyk & J. Soininen, 2010. The ecology of the invasive cyanobacterium Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) in two hypereutrophic lakes dominated by Planktothrix agardhii (Oscillatoriales, Cyanophyta). European Journal of Phycology 45(4): 365–374.CrossRefGoogle Scholar
  26. Komárek, J. & K. Anagnostidis, 1999. Süßwasserflora von Mitteleuropa. Cyanoprokaryota Teil 1/Part 1: Chroococcales. Gustav Fischer Verlag Jena, Lübeck, Ulm: 548 S.Google Scholar
  27. Komárek, J. & E. Zapomelova, 2008. Planktic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum—2. Part: straight types. Fottea Olomouc 8(1): 1–14.Google Scholar
  28. Lagos, N., H. Onodera, P. A. Zagatto, D. Andrinolo, S. Azevedo & Y. Oshima, 1999. The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon 37: 1359–1373.PubMedCrossRefGoogle Scholar
  29. Lepistö, L., A.-L. Holopainen & H. Vuoristo, 2004. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreallakes. Limnologica 34: 236–248.CrossRefGoogle Scholar
  30. Margalef, D. R., 1958. Temporal succession and spatial heterogeneity in phytoplankton. In Buzzati-Traverso, A. (ed.), Perspectives in marine biology. University of California Press, Berkeley.Google Scholar
  31. Mischke, U. & B. Nixdorf, 2003. Equilibrium phase conditions in shallow German lakes: how Cyanoprokaryota species establish a steady state phase in late summer. Hydrobiologia 502: 123–132.CrossRefGoogle Scholar
  32. Moe, S. J., B. Dudley & R. Ptacnik, 2008. REBECCA databases: experiences from compilation and analyses of monitoring data from 5,000 lakes in 20 European countries. Aquatic Ecology 42: 183–201.CrossRefGoogle Scholar
  33. Moe, S.J., A. Schmidt-Kloiber, B.J. Dudley & D. Hering, 2012. The WISER way of organising ecological data from European rivers, lakes, transitional and coastal waters. Hydrobiologia. doi: 10.1007/s10750-012-1337-0
  34. Moisander, P. H., L. A. Cheshire, J. Braddy, E. Calandrino, H. Hoffman, M. F. Piehler & H. W. Paerl, 2012. Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. Federation of European Microbiological Societies 79: 800–811.CrossRefGoogle Scholar
  35. Moustaka-Gouni, M., E. Vardaka & E. Tryfon, 2006. Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): steady-state dominance of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii. Hydrobiologia 575: 129–140.CrossRefGoogle Scholar
  36. Moustaka-Gouni, M., K. A. Kormas, E. Vardaka, M. Katsiapi & S. Gkelis, 2009. Raphidiopsis mediterranea Skuja represents non-heterocystous life-cycle stages of Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju in Lake Kastoria (Greece), its type locality: evidence by morphological and phylogenetic analysis. Harmful Algae 8: 864–872.CrossRefGoogle Scholar
  37. Nicholls, K. H & D. E. Wujek, 2003. Chrysophycean algae. In J. D. Wehr & R. G. Sheath (eds), Freshwater Algae of North America. Ecology and Classification. Academic Press. California: 918 pp.Google Scholar
  38. Nixdorf, B., U. Mischke & J. Rücker, 2003. Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes—an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502: 111–121.CrossRefGoogle Scholar
  39. Nõges, T., 2009. Relationships between morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia 633: 33–43.CrossRefGoogle Scholar
  40. Ott, I. & T. Kõiv. 1999. Estonian Small Lakes: Special Features and Changes. Estonian Environment Information Centre. Estonian Academy of Sciences. Institute of Zoology and Botany of the Estonian Agricultural University, Tallinn: 128 pp.Google Scholar
  41. Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.CrossRefGoogle Scholar
  42. Phillips, G., A. Lyche-Solheim, B. Skjelbred, U. Mischke, S. Drakare, G. Free, M. Järvinen, C. de Hoyos, G. Morabito, S. Poikane & L. Carvalho, 2012. A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia, this issue.Google Scholar
  43. Pielou, E. C., 1975. Ecological Diversity. Wiley InterScience, New York.Google Scholar
  44. Ptacnik, R., L. Lepistö, E. Willén, P. Brettum, T. Andersen, S. Rekolainen, A. Lyche Solheim & L. Carvalho, 2008. Quantitative responses of lake phytoplankton to eutrophication in Northern Europe. Aquatic Ecology 42: 227–236.CrossRefGoogle Scholar
  45. Rakko, A., R. Laugaste & I. Ott, 2008. Algal blooms in Estonian small lakes. In Evangelista, V., L. Barsanti, A. M. Frassanito, P. Vincenzo & P. Gualtieri (eds), Algal Toxins: Nature, Occurrence, Effect and Detection. Springer, Pisa: 211–220.CrossRefGoogle Scholar
  46. Reynolds, C. S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge: 388–433.Google Scholar
  47. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  48. Rosen, G., 1981. Phytoplankton indicators and their relations to certain chemical and physical factors. Limnologica 13: 263–290.Google Scholar
  49. Scheffler, W. & G. Morabito, 2003. Topical observations on centric diatoms (Bacillariophyceae, Centrales) of Lake Como (N. Italy). Journal of Limnology 62: 47–60.CrossRefGoogle Scholar
  50. Shafik, H. M., S. Herodek, M. Presing & L. Voros, 2001. Factors effecting growth and cell composition of cyanoprokaryote Cylindrospermopsis raciborskii (Woloszynska) Sheenayya et Subba Raju. Algological Studies 102: 75–93.Google Scholar
  51. Shannon, C. E., 1948. The mathematical theory of communication. In Shannon, C. E. & W. Weaver (eds), The mathematical theory of communication. Illinois Press, Urbana University.Google Scholar
  52. Simpson, E. H., 1949. Measurement of diversity. Nature 163: 688.CrossRefGoogle Scholar
  53. Stomp, M., J. Huisman, G. G. Mittelbach, E. Litchman & C. A. Klausmeier, 2011. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92: 2096–2107.PubMedCrossRefGoogle Scholar
  54. Stüken, A., J. Rücker, T. Endrulat, K. Preussel, M. Hemm, B. Nixdorf, U. Karsten & C. Wiedner, 2006. Distribution of three alien cyanobacterial species (Nostocales) in northeast Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides. Phycologia 45(6): 696–703.CrossRefGoogle Scholar
  55. Ter Braak C. J. F. & Šmilauer P. 2002. CANOCO Reference Manual and Canodraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca.Google Scholar
  56. Trigal, C., W. Goedkoop & R. K. Johnson, 2011. Changes in phytoplankton, benthic invertebrate and fish assemblages of boreal lakes following invasion by Gonyostomum semen. Freshwater Biology 56: 1937–1948.CrossRefGoogle Scholar
  57. Valerio, E., P. Pereira, M. L. Saker, S. Franca & R. Tenreiro, 2005. Molecular characterization of Cylindrospermopsis raciborskii strains isolated from Portuguese freshwaters. Harmful Algae 4: 1044–1052.CrossRefGoogle Scholar
  58. Watson, S. B., E. McCauley & J. Downing, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnology and Oceanography 42: 486–495.CrossRefGoogle Scholar
  59. Willén, E., 2003. Dominance patterns of planktonic algae in Swedish forest lakes. Hydrobiologia 502: 315–324.CrossRefGoogle Scholar
  60. Willén, E., 2007. Växtplankton i sjöar. Bedömningsgrunder. SLU, Institutionen för Miljöanalys, Rapport 5: 33 pp.Google Scholar
  61. Willén, E., S. Hajdu & Y. Pejler, 1990. Summer phytoplankton in 73 nutrient-poor Swedish Lakes. Classification, ordination and choice of long-term monitoring objects. Limnologica 20: 217–227.Google Scholar
  62. Zabelina, M. M., I. A. Kiselev, A. I. Proshkina-Lavrenko, V. C. Sheshukova, 1951. Opredelitel presnovodnych vodoroslei SSSR (Identification key for freshwater algae of USSR. Diatoms). Diatomovye vodorosli, Moscow: 619 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Kairi Maileht
    • 1
    Email author
  • Tiina Nõges
    • 1
  • Peeter Nõges
    • 1
  • Ingmar Ott
    • 1
  • Ute Mischke
    • 2
  • Laurence Carvalho
    • 3
  • Bernard Dudley
    • 3
  1. 1.Institute of Agricultural and Environmental Sciences, Centre for LimnologyEstonian University of Life SciencesTartu CountyEstonia
  2. 2.Department of Shallow Lakes and Lowland RiversLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  3. 3.Centre for Ecology & Hydrology (CEH)MidlothianUK

Personalised recommendations