Advertisement

Hydrobiologia

, Volume 704, Issue 1, pp 127–140 | Cite as

Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes

  • L. CarvalhoEmail author
  • S. Poikane
  • A. Lyche Solheim
  • G. Phillips
  • G. Borics
  • J. Catalan
  • C. De Hoyos
  • S. Drakare
  • B. J. Dudley
  • M. Järvinen
  • C. Laplace-Treyture
  • K. Maileht
  • C. McDonald
  • U. Mischke
  • J. Moe
  • G. Morabito
  • P. Nõges
  • T. Nõges
  • I. Ott
  • A. Pasztaleniec
  • B. Skjelbred
  • S. J. Thackeray
WATER BODIES IN EUROPE

Abstract

Phytoplankton constitutes a diverse array of short-lived organisms which derive their nutrients from the water column of lakes. These features make this community the most direct and earliest indicator of the impacts of changing nutrient conditions on lake ecosystems. It also makes them particularly suitable for measuring the success of restoration measures following reductions in nutrient loads. This paper integrates a large volume of work on a number of measures, or metrics, developed for using phytoplankton to assess the ecological status of European lakes, as required for the Water Framework Directive. It assesses the indicator strength of these metrics, specifically in relation to representing the impacts of eutrophication. It also examines how these measures vary naturally at different locations within a lake, as well as between lakes, and how much variability is associated with different replicate samples, different months within a year and between years. On the basis of this analysis, three of the strongest metrics (chlorophyll-a, phytoplankton trophic index (PTI), and cyanobacterial biovolume) are recommended for use as robust measures for assessing the ecological quality of lakes in relation to nutrient-enrichment pressures and a minimum recommended sampling frequency is provided for these three metrics.

Keywords

Ecological indicator Eutrophication Water Framework Directive (WFD) Chlorophyll Cyanobacteria Trophic index 

Notes

Acknowledgments

This paper is a result of the project WISER (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery) funded by the European Union under the 7th Framework Programme, Theme 6 (Environment including Climate Change) (contract No. 226273). We would like to thank all the phytoplankton counters and national data providers. These include (figures in brackets give the number of WBs): Phytoplankton counters (WISER field exercise): Martina Austoni, Bill Brierley, Tatiana Caraballo, Laurence Carvalho, Jordi Catalan, Caridad de Hoyos, Mitzi De Ville, Stina Drakare, Roser Farrés, Rene Groben, Camilla Hagman, Gina Henderson, Reija Jokipii, Christophe Laplace-Treyture, Kairi Maileht, Maria Antonietta Mariani, Ute Mischke, Ana Negro, Maija Niemelä, Pierisa Panzani, Agnieszka Pasztaleniec, Malgorzata Poniewozik, Sarah Pritchard, Aimar Rakko, Birger Skjelbred, Annette Tworeck, Tomasa Virdis. Data providers: Mediterranean GIG (Data manager: Caridad de Hoyos, CEDEX-CEH): Cyprus: Ministry of Agriculture, Natural Resources and Environment, Water Development Department (MANRE-WDD); France: water agencies and Institut national de recherche en sciences et rechnologies pour l′environnement et l′agriculture (Irstea); Greece: Maria Moustaka, Aristotle University of Thessaloniki; Italy: Università degli Studi di Sassari. Dipartimento di Scienze Botaniche, Ecologiche e Geologiche (DiSBEG); Portugal: Instituto da Água, I.P. (INAG); Spain: Ministerio de Agricultura, Alimentación y Medio Ambiente, Centro de Estudios Hidrográficos (CEDEX-CEH). Central-Baltic GIG (Data manager: Ute Mischke, IGB): Belgium: Jeroen Van Wichelen, Ghent University (UGENT); Denmark: National Environmental Research Institute, University of Aarhus; Estonia: Estonian University of Life Sciences (EMU) gathered for the state monitoring programme supported by the Estonian Ministry of Environment; France: water agencies and Institut national de recherche en sciences et rechnologies pour l′environnement et l′agriculture (Irstea); Germany: Data from German lakes were provided by the following institutions of the German Federal States: Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg (LUGV; 127), Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Mecklenburg-Vorpommern (MLUV, Seenprogramm, 65), Landesbetrieb für Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt (LHW), Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig–Holstein (LLUR), Senatsverwaltung für Gesundheit, Soziales und Verbraucherschutz Berlin (SenGUV), Niedersächsische Landesbetrieb für Wasserwirtschaft, Küsten-und Naturschutz (NLWKN, Sulingen); Latvia: Sandra Poikane, Latvian Environment, Geology and Meteorology Centre; Lithuania—EPA Lithuania; Netherlands: Rijkswaterstaat (RWS); Poland: Data were provided partly by the Institute of Environmental Protection—National Research Institute. The Inspection for Environmental Protection provided data obtained within the framework of state environmental monitoring; United Kingdom—Scottish Environment Protection Agency (SEPA) and the Environment Agency for England & Wales (EA). Eastern-Continental GIG (Data manager: Gabor Borics, CER): Hungary: Centre for Ecological Research, Hungarian Academy of Sciences; Romania: Ministeriul Meduli şi Pădurilor (MMP). Northern GIG (Data manager: Geoff Phillips, EA): Finland: Finnish Environment Institute (SYKE); Ireland: Environment Protection Agency (EPA); Norway: Norwegian Institute for Water Research (NIVA); Sweden: Swedish University of Agricultural Sciences (SLU); United Kingdom—Scottish Environment Protection Agency (SEPA) and the Environment Agency for England & Wales (EA).

References

  1. Bennion, H., 1994. A diatom-phosphorus transfer-function for shallow, eutrophic ponds in Southeast England. Hydrobiologia 276: 391–410.Google Scholar
  2. Birk, S., J. Strackbein & D. Hering, 2010. WISER methods database. Version: March 2011. http://www.wiser.eu/results/method-database/.
  3. Birk, S., W. Bonne, A. Borja, S. Brucet, A. Courrat, S. Poikane, A. Solimini, W. van de Bund, N. Zampoukas & D. Hering, 2012. Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators 18: 31–41.CrossRefGoogle Scholar
  4. Borics, G., A. Abonyi, E. Krasznai, G. Várbíró, I. Grigorszky, S. Szabó, C. Deák & B. Tóthmérész, 2011. Small-scale patchiness of the phytoplankton in a lentic oxbow. Journal of Plankton Research 33: 973–981.CrossRefGoogle Scholar
  5. Bresciani, M., D. Stroppiana, D. Odermatt, G. Morabito & C. Giardino, 2011. Assessing remotely sensed chlorophyll-a for the implementation of the Water Framework Directive in European perialpine lakes. Science of the Total Environment 409: 3083–3091.PubMedCrossRefGoogle Scholar
  6. Brettum, P., 1989. Alger som indikatorer på Vannkvalitet i norske innsjøer Planteplankton. NIVA, Blindern, Oslo.Google Scholar
  7. Capblancq, J. & J. Catalan, 1994. Phytoplankton: which, and how much? In Margalef, R. (ed.), Limnology Now: A Paradigm of Planetary Problems. Elsevier Science B.V., New York: 9–36.Google Scholar
  8. Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–369.CrossRefGoogle Scholar
  9. Carstensen, J., P. Henriksen & A. -S. Heiskanen, 2007. Summer algal blooms in shallow estuaries: definition, mechanisms, and link to eutrophication. Limnology and Oceanography 52: 370–384.CrossRefGoogle Scholar
  10. Carvalho, L., A. Solimini, G. Phillips, M. van den Berg, O.-P. Pietiläinen, A. Lyche-Solheim, S. Poikane & U. Mischke, 2008. Chlorophyll reference conditions for European intercalibration lake types. Aquatic Ecology 42: 203–211.Google Scholar
  11. Carvalho, L., C. A. Miller, E. M. Scott, G. A. Codd, P. S. Davies & A. N. Tyler, 2011. Cyanobacterial blooms: statistical models describing risk factors for national-scale lake assessment and lake management. Science of the Total Environment 409: 5353–5358.PubMedGoogle Scholar
  12. Catalan, J., M. Ventura, A. Munné, C. Solà & J. M. Pagés, 2006. ECOES. Protocol d’avaluació de l’estat ecològic dels estanys. Agència Catalana de l’Aigua. Barcelona: 75 pp.Google Scholar
  13. Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.CrossRefGoogle Scholar
  14. Dokulil, M. T. & K. Teubner, 2006. Bewertung der Phytoplanktonstruktur stehender Gewässer gemäß der EU-Wasserrahmenrichtlinie: Der modifizierte Brettum-Index.-Dt. Ges. Limnol. (DGL), Tagungsbericht 2005 (Karlsruhe), 356–360, Werder.Google Scholar
  15. EC, 2000. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities L327: 1–72.Google Scholar
  16. EC, 2008. Commission Decision of 30 October 2008 establishing, pursuant to Directive 2000/60/EC of the European Parliament and the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise 2008/915/EC. Official Journal of the European Communities, L332/20. European Commission, Brussels.Google Scholar
  17. Garmendia, M., M. Revilla & L. Zarauz, 2012. Testing the usefulness of a simple automatic method for particles abundance and size determination to derive cost-effective biological indicators, in large monitoring networks. Hydrobiologia, this issue.Google Scholar
  18. Hering, D., R. K. Johnson, S. Kramm, S. Schmutz, K. Szoszkiewicz & P. F. M. Verdonschot, 2006. Assessment of European rivers with diatoms, macrophytes, invertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology 51: 1757–1785.Google Scholar
  19. Hunter, P. D., A. N. Tyler, L. Carvalho, G. A. Codd & S. C. Maberly, 2010. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sensing of the Environment 114: 2705–2718.CrossRefGoogle Scholar
  20. Jansson, M., L. Persson, A. M. De Roos, R. I. Jones & L. J. Tranvik, 2007. Terrestrial carbon and intraspecific size-variation shape lake ecosystems. Trends in Ecology & Evolution 22: 316–322.CrossRefGoogle Scholar
  21. Järvinen, M., S. Drakare, G. Free, A. Lyche-Solheim, G. Phillips, B. Skjelbred, U. Mischke, I. Ott, S. Poikane, M. Søndergaard, A. Pasztaleniec, J. Van Wichelen & R. Portielje, 2012. Phytoplankton indicator taxa for reference conditions in lowland Northern and Central European lakes. Hydrobiologia, doi: 10.1007/s10750-012-1315-6.
  22. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343): 151–164.CrossRefGoogle Scholar
  23. Kamenir, Y. & G. Morabito, 2009. Lago Maggiore oligotrophication as seen from the long-term evolution of its phytoplankton taxonomic size structure. Journal of Limnology 68: 146–161.CrossRefGoogle Scholar
  24. Karr, J. R. & E. W. Chu, 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island Press, Washington, DC: 206 pp.Google Scholar
  25. Lyche Solheim, A., C. K. Feld, S. Birk, G. Phillips, L. Carvalho, G. Morabito, U. Mischke, N. Willby, M. Søndergaard, S. Hellsten, A. Kolada, J. Böhmer, O. Miler, M. Pusch, C. Argillier, E. Jeppesen, T. Lauridsen & S. Poikane, 2012. Comparison of common metrics for phytoplankton, macrophytes, macroinvertebrates and fish for ecological status assessment of European lakes: a synthesis from the WISER project Module 3. Hydrobiologia, this issue.Google Scholar
  26. Maileht, K., T. Nõges, P. Nõges, I. Ott, U. Mischke, L. Carvalho & B. J. Dudley, 2012. Water colour, phosphorus and alkalinity are the major determinants of the dominant phytoplankton species in European lakes. Hydrobiologia. doi: 10.1007/s10750-012-1348-x.
  27. McGowan, S., G. Britton, E. Howarth & B. Moss, 1999. Ancient blue-green blooms. Limnology & Oceanography 44: 436–439.CrossRefGoogle Scholar
  28. Mischke, U., U. Riedmüller, E. Hoehn, I. Schönfelder & B. Nixdorf, 2008. Description of the German system for phytoplankton-based assessment of lakes for implementation of the EU Water Framework Directive (WFD). In Mischke, U. & B. Nixdorf (eds), Bewertung von Seen mittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie Gewässerreport (Nr. 10), BTUC-AR 2/2008, ISBN 978-3-940471-06-2, University press, BTU Cottbus: 117–146.Google Scholar
  29. Mischke, U., L. Carvalho, C. McDonald, B. Skjelbred, A. Lyche Solheim, G. Phillips, C. de Hoyos, G. Borics, J. Moe & J. Pahissa, 2011. WISER Deliverable D3.1-2: Report on phytoplankton bloom metrics, March 2011. http://www.wiser.eu/results/deliverables/ or http://nora.nerc.ac.uk/.
  30. Moe, J., A. Schmidt-Kloiber, B. J. Dudley & D. Hering, 2012. The WISER way of organising ecological data from European rivers, lakes and transitional/coastal waters. Hydrobiologia. doi: 10.1007/s10750-012-1337-0.
  31. Nygaard, G., 1949. Hydrobiological studies of some Danish ponds and lakes II. The quotient hypothesis and some new or little known phytoplankton organisms. Det Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter 7: 1–293.Google Scholar
  32. OECD, Organisation for Economic Co-operation and Development, 1982 Eutrophication of waters: monitoring, assessment and control. OECD, Paris.Google Scholar
  33. Ott, I., 2005. Phytoplankton as a tool to classify ecological status of lakes. Estonian experiences. In Lääne, A. & P. Heinonen (eds), Sampling. Presentations on Three Training Seminars about Quality Assurance, Biological Methods of Water Framework Directive and Waste Water Sampling Techniques, Suomen Ympäristökeskuksen moniste 328: 48–56.Google Scholar
  34. Padisák, J., G. Borics, I. Grigorszky & E. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553: 1–14.CrossRefGoogle Scholar
  35. Phillips, G., O. P. Pietilainen, L. Carvalho, A. Solimini, A. Lyche Solheim & A. C. Cardoso, 2008. Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42: 213–226.CrossRefGoogle Scholar
  36. Phillips, G., B. Skjelbred, G. Morabito, L. Carvalho, A. Lyche Solheim, T. Andersen, U. Mischke, C. de Hoyos & G. Borics, 2010. WISER Deliverable D3.1-1: Report on phytoplankton composition metrics, including a common metric approach for use in intercalibration by all GIGs, August 2010. http://www.wiser.eu/results/deliverables/ or http://nora.nerc.ac.uk/.
  37. Phillips, G., A. Lyche Solheim, B. Skjelbred, U. Mischke, S. Drakare, G. Free, M. Järvinen, C. de Hoyos, G. Morabito, S. Poikane & L. Carvalho, 2012. A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia. doi: 10.1007/s10750-012-1390-8.
  38. Poikane, S. (ed.), 2009. Water Framework Directive intercalibration technical report. Part 2: Lakes. EUR 23838 EN/2, Office for Official Publications of the European Communities, Luxembourg.Google Scholar
  39. Poikane, S., M. Helena Alves, C. Argillier, M. Van Den Berg, F. Buzzi, E. Hoehn, C. de Hoyos, I. Karottki, C. Laplace-Treyture, A. Lyche Solheim, J. Ortiz-Casas, I. Ott, G. Phillips, A. Pilke, J. Pádua, S. Remec-Rekar, U. Riedmüller, J. Schaumburg, M. Luisa Serrano, H. Soszka, D. Tierney, G. Urbanič & G. Wolfram, 2010. Defining chlorophyll-a reference conditions in European lakes. Environmental Management 45: 1286–1298.PubMedCrossRefGoogle Scholar
  40. Poikane, S., M. van den Berg, C. de Hoyos, S. Hellsten, J. Ortiz-Casas, K. Pall, R. Portielje, G. Phillips, A. Lyche Solheim, D. Tierney, G. Wolfram & W. van de Bund, 2011. Lake ecological assessment systems and intercalibration for the European Water Framework Directive: aims, achievements and further challenges. Procedia Environmental Sciences 9: 153–168.CrossRefGoogle Scholar
  41. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  42. Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 370: 11–26.CrossRefGoogle Scholar
  43. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  44. Salmaso, N. & J. Padisak, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.CrossRefGoogle Scholar
  45. Salmaso, N., G. Morabito, F. Buzzi, L. Garibaldi, M. Simona & R. Mosello, 2006. Phytoplankton as an indicator of the water quality of the deep lakes south of the Alps. Hydrobiologia 563: 167–187.CrossRefGoogle Scholar
  46. Schmidt-Kloiber, A., J. Moe, B. Dudley, J. Strackbein & R. Vogl, 2012. The WISER metadatabase: the key to more than 100 ecological datasets from European rivers, lakes and coastal waters. Hydrobiologia. doi: 10.1007/s10750-012-1295-6.
  47. Søndergaard, M., E. Jeppesen, J. P. Jensen & S. L. Amsinck, 2005. Water Framework Directive: ecological classification of Danish lakes. Journal of Applied Ecology 42: 616–629.CrossRefGoogle Scholar
  48. Søndergaard, M., S. E. Larsen, T. B. Jørgensen & E. Jeppesen, 2011. Using chlorophyll a and cyanobacteria in the ecological classification of lakes. Ecological Indicators 11: 1403–1412.CrossRefGoogle Scholar
  49. Swedish EPA, 2010. Status, potential and quality requirements for lakes, watercourses, coastal and transitional waters: a handbook on how quality requirements in bodies of surface water can be determined and monitored. Swedish Environmental Protection Agency Handbook 2007:4, ver. 1, Stockholm: 421 pp.Google Scholar
  50. Thackeray, S. J., P. Nõges, M. Dunbar, B. J. Dudley, B. Skjelbred, G. Morabito, L. Carvalho, G. Phillips & U. Mischke, 2011. WISER Deliverable D3.1-3: Uncertainty in Lake Phytoplankton Metrics, June 2011. http://www.wiser.eu/results/deliverables/ or http://nora.nerc.ac.uk/.
  51. Thackeray, S. J., M. J. Dunbar, C. McDonald & B. J. Dudley, 2012a. Annex 2: WISER temporal uncertainty analysis for phytoplankton. In Mischke et al. 2012a. Deliverable D3.1-4: Guidance document on sampling, analysis and counting standards for phytoplankton in lakes. WISER Deliverable D3.1-4, February 2012. http://www.wiser.eu/results/deliverables/ or http://nora.nerc.ac.uk/.
  52. Thackeray, S. J., P. Nõges, M. J. Dunbar, B. J. Dudley, B. Skjelbred, G. Morabito, L. Carvalho, G. Phillips, U. Mischke, J. Catalan, C. de Hoyos, C. Laplace, M. Austoni, B. M. Padeddal, K. Maileht, A. Pasztaleniec, M. Järvinen & A. Lyche Solheim, 2012b. Quantifying uncertainties in biologically-based water quality assessment: a pan-European analysis of phytoplankton community metrics. Ecological Indicators, In press.Google Scholar
  53. Tuvikene, L., T. Nõges & P. Nõges, 2011. Why do phytoplankton species composition and “traditional” water quality parameters indicate different ecological status of a large shallow lake? Hydrobiologia 660: 3–15.CrossRefGoogle Scholar
  54. Watson, S. B., E. McCauley & J. A. Downing, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of different nutrient status. Limnology and Oceanography 42: 487–495.CrossRefGoogle Scholar
  55. Wolfram, G., C. Argillier, J. De Bortoli, G. Buzzi, M. T. Dokulil, E. Hoehn, A. Marchetto, P. J. Martinez, G. Morabito, M. Reichmann, S. Remec-Rekar, U. Riedmüller, C. Rioury, J. Schaumburg, L. Schulz & G. Urbanic, 2009. Reference conditions and WFD compliant class boundaries for phytoplankton biomass and chlorophyll-a in Alpine lakes. Hydrobiologia 633: 45–58.CrossRefGoogle Scholar
  56. Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B 365: 2093–2106.CrossRefGoogle Scholar
  57. Wunsam, S. & R. Schmidt, 1995. A diatom-phosphorus transfer function for Alpine and pre-alpine lakes. Memorie dell’Istituto Italiano di Idrobiologia 53: 85–99.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • L. Carvalho
    • 1
    Email author
  • S. Poikane
    • 2
  • A. Lyche Solheim
    • 3
  • G. Phillips
    • 4
  • G. Borics
    • 5
  • J. Catalan
    • 6
  • C. De Hoyos
    • 7
  • S. Drakare
    • 8
  • B. J. Dudley
    • 1
  • M. Järvinen
    • 9
  • C. Laplace-Treyture
    • 10
  • K. Maileht
    • 11
  • C. McDonald
    • 1
  • U. Mischke
    • 12
  • J. Moe
    • 3
  • G. Morabito
    • 13
  • P. Nõges
    • 11
  • T. Nõges
    • 11
  • I. Ott
    • 11
  • A. Pasztaleniec
    • 14
  • B. Skjelbred
    • 3
  • S. J. Thackeray
    • 15
  1. 1.Centre for Ecology & HydrologyPenicuikUK
  2. 2.Institute for Environment & Sustainability, EC Joint Research Centre (JRC)IspraItaly
  3. 3.Norsk Institutt for Vannforskning (NIVA)OsloNorway
  4. 4.Environment Agency, Kings Meadow HouseReadingUK
  5. 5.Department of Tisza Research, Balaton Limnological InstituteCentre for Ecological Research, Hungarian Academy of SciencesDebrecenHungary
  6. 6.Centre for Advanced Studies of Blanes (CEAB-CSIC)BlanesSpain
  7. 7.Centro de Estudios Hidrográficos del CEDEXMadridSpain
  8. 8.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural Sciences (SLU)UppsalaSweden
  9. 9.Finnish Environment Institute (SYKE), The Jyväskylä OfficeJyväskyläFinland
  10. 10.Irstea, UR REBXCestas CedexFrance
  11. 11.Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, Centre for LimnologyTartu CountyEstonia
  12. 12.Department of Shallow Lakes and Lowland RiversLeibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
  13. 13.CNR Institute for Ecosystems StudyVerbania PallanzaItaly
  14. 14.Institute of Environmental Protection-National Research InstituteKolektorska 4Poland
  15. 15.Centre for Ecology & Hydrology, Lancaster Environment CentreLancasterUK

Personalised recommendations