, Volume 703, Issue 1, pp 33–45 | Cite as

Factors affecting the establishment of the invasive crayfish Procambarus clarkii (Crustacea, Decapoda) in the Mediterranean rivers of the northeastern Iberian Peninsula

  • A. Maceda-VeigaEmail author
  • A. De Sostoa
  • S. Sánchez-Espada
Primary Research Paper


It is essential to find the combination of factors associated with ecosystem invasibility, as this forms part of basic knowledge on biological invasions and provides important information to guide management and conservation decisions. We surveyed 325 sampling sites in Catalonia to investigate relationships between crayfish presence and a series of biotic and abiotic factors, including fish abundance and species richness, geographical features, and water mineralization and eutrophication. Abiotic data provided by 29 environmental variables were studied by principal-components analysis. We then used a combination of three statistical approaches (comparison of average scores, general linear mixed models, and hierarchical partitioning analysis) to determine the potential relationship between crayfish occurrence and predictors. Our findings seem to indicate that the presence of crayfish was associated with geographical features, water mineralization and eutrophication, and the introduction of non-indigenous fish species to Catalonia. Our results also suggest that re-establishment of the natural hydrology of Mediterranean streams could hinder the spread of Procambarus clarkii. This, combined with preservation of headwater streams and attempts at local extirpation of P. clarkii, would favour native species and, potentially, enable the successful reintroduction of the native white-clawed crayfish (Austropotamobius pallipes species complex).


Procambarus clarkii Environmental pressures Ecosystem invasibility Fish communities Mediterranean streams 



We dedicate this work to the memory of Sergio Sánchez, who unexpectedly died in 2004. The red swamp crayfish was the research topic of his DEA dissertation and he worked on the preliminary analyses of this manuscript. We want to dedicate this paper to his enthusiasm in field work and database management on this and other projects he participated in while he was working in the University of Barcelona’s Department of Animal Biology. We would like to add to this tribute other members of the Department who had the opportunity to share work and leisure time with Sergio, in particular: C. Franch, D. Vinyoles, F. Casals, N. Caiola, O. Gordo, E. Ribes, X. Ferrer, and J.D. Rodríguez-Teijeiro. We also thank the Catalan Water Agency (Agència Catalana de l’Aigua) for financial support and Toffa Evans for revising the English. We also thank four anonymous referees and an associate editor for their constructive review.

Supplementary material

10750_2012_1335_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 26 kb)


  1. Alonso, F., 2001. Efficiency of electrofishing as a sampling method for freshwater crayfish populations in small creeks. Limnetica 20: 59–72.Google Scholar
  2. Angeler, D. G., S. Sánchez-Carrillo, G. García & M. Alvarez-Cobelas, 2001. The influence of Procambarus clarkii (Cambaridae, Decapoda) on water quality and sediment characteristics in a Spanish floodplain wetland. Hydrobiologia 464: 89–98.CrossRefGoogle Scholar
  3. Barbaresi, S., S. Cannicci, M. Vannini & S. Fratini, 2007. Environmental correlates of two macro-decapods distribution in Central Italy: multi-dimensional ecological knowledge as a tool for conservation of endangered species. Biological Conservation 136: 431–441.CrossRefGoogle Scholar
  4. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and Fish, 2nd edn. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water; Washington, DC.Google Scholar
  5. Benejam, L., E. Aparicio, M. J. Vargas, A. Vila-Gispert & E. García-Berthou, 2008. Assessing fish metrics and biotic indices in a Mediterranean stream: effects of uncertain native status of fish. Hydrobiologia 603: 197–210.CrossRefGoogle Scholar
  6. Benjamini, Y. & Y. Hochberg, 1995. Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57: 289–300.Google Scholar
  7. Bubb, D. H., O. J. O’Malley, A. C. Gooderham & M. C. Lucas, 2009. Relative impacts of native and non-native crayfish on shelter use by an indigenous benthic fish. Aquatic Conservation-Marine and Freshwater Ecosystems 19: 448–455.CrossRefGoogle Scholar
  8. Capinha, C. & P. Anastacio, 2011. Assessing the environmental requirements of invaders using ensembles of distribution models. Diversity and Distributions 17: 13–24.CrossRefGoogle Scholar
  9. Capinha, C., B. Leung & P. Anastacio, 2011. Predicting worldwide invasiveness for four major problematic decapods: an evaluation of using different calibration sets. Ecography 34: 448–459.CrossRefGoogle Scholar
  10. CEN, 2002. Water Quality – Sampling of Fish with Electricity. European Standard-EN – 14011:2003. European Committee for Standardization, Brussels: 18 pp.Google Scholar
  11. Chevan, A. & M. Sutherland, 1991. Hierarchical partitioning. The American Statistician 45: 90–96.Google Scholar
  12. Clavero, M. & E. García-Berthou, 2005. Invasive species are a leading cause of animal extinctions. Trends in Ecology and Evolution 20: 110.PubMedCrossRefGoogle Scholar
  13. Clavero, M. & E. García-Berthou, 2006. Homogenization dynamics and introduction routes of invasive freshwater fish in the Iberian Peninsula. Ecological Applications 16: 2313–2324.PubMedCrossRefGoogle Scholar
  14. Clavero, M., L. Benejam & A. Seglar, 2009. Microhabitat use by foraging white-clawed crayfish (Austropotamobius pallipes) in stream pools in the NE Iberian Peninsula. Ecological Research 24: 771–779.CrossRefGoogle Scholar
  15. Clavero, M., V. Hermoso, N. Levin & S. Kark, 2010. Geographical linkages between threats and imperilment in freshwater fish in the Mediterranean basin. Diversity and Distributions 16: 744–754.CrossRefGoogle Scholar
  16. Colautti, R. I., I. A. Grigorovich & H. J. MacIsaac, 2006. Propagule pressure: a null model for biological invasions. Biological Invasions 8: 1023–1037.CrossRefGoogle Scholar
  17. Correia, A. M., 2001. Seasonal and interspecific evaluation of predation by mammals and birds on the introduced red swamp crayfish Procambarus clarkii (Crustacea, Cambaridae) in a freshwater marsh (Portugal). Journal of zoology 255: 533–541.CrossRefGoogle Scholar
  18. Crawley, M. J., 2002. Statistical computing: an introduction to data analysis using S-Plus. Wiley, New York.Google Scholar
  19. Cruz, M. J. & R. Rebelo, 2007. Establishment of freshwater habitats by an introduced crayfish, Procambarus clarkii, in Southwest Iberian Peninsula. Hydrobiologia 575: 191–201.CrossRefGoogle Scholar
  20. Dana, E. D., J. Garcia-de-Lomas, R. Gonzalez & F. Ortega, 2011. Effectiveness of dam construction to contain the invasive crayfish Procambarus clarkii in a Mediterranean mountain stream. Ecological Engineering 37: 1607–1613.CrossRefGoogle Scholar
  21. Diéguez-Uribeondo, J., A. Rueda, E. Castien & J. C. Bascones, 1997. A plan of restoration in Navarra for the native freshwater crayfish species of Spain, Austropotamobius pallipes. Bulletin Francais de la Peche et de la Pisciculture 347: 625–637.CrossRefGoogle Scholar
  22. Doadrio, I., 2002. Atlas y libro rojo de los peces continentales de España. Dirección General de Conservación de la Naturaleza. Ministerio de Medio Ambiente, Madrid: 364 pp.Google Scholar
  23. Elvira, B., G. G. Nicola & A. Almodóvar, 1996. Pike and red swamp crayfish: a new case on predator-prey relationship between aliens in central Spain. Journal of Fish Biology 48: 437–446.Google Scholar
  24. European Commission, 2000. Directive 2000/60/EC of the European Parliament of the Council of 23 October 2000 establishing a framework for Assemblage action in the field of water policy. Official Journal of European Assemblage L327: 1–72.Google Scholar
  25. Figuerola, B., A. Maceda-Veiga & A. De Sostoa, 2012. Assessing the effects of sewage effluents in a Mediterranean creek: fish population features and biotic indices. Hydrobiologia. doi: 10.1007/s10750-012-1132-y.
  26. Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. Tilman & B. V. Holle, 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88: 3–17.PubMedCrossRefGoogle Scholar
  27. García, L. V., 2001. Escaping the Bonferroni iron claw in ecological studies. Oikos 105(3): 657–663.CrossRefGoogle Scholar
  28. Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecological Systems 30: 51–81.CrossRefGoogle Scholar
  29. Gherardi, F. & P. Acquistapace, 2007. Invasive crayfish in Europe: the impact of Procambarus clarkii on the littoral assemblage of a Mediterranean lake. Freshwater Biology 52: 1249–1259.CrossRefGoogle Scholar
  30. Gherardi, F., S. Barbaresi & G. Salvi, 2000. Spatial and temporal patterns in the movement of Procambarus clarkii, an invasive crayfish. Aquatic Sciences 62: 179–193.Google Scholar
  31. Gherardi, F., S. Barbaresi, O. Vaselli & A. Bencini, 2002. A comparison of trace metal accumulation in indigenous and alien freshwater macro-decapods. Marine and Freshwater Behaviour and Physiology 35: 179–188.CrossRefGoogle Scholar
  32. Gherardi, F., L. Aquiloni, J. Diéguez-Uribeondo & E. Tricarico, 2011. Managing invasive crayfish: is there a hope? Aquatic Sciences 73: 185–200.CrossRefGoogle Scholar
  33. Gil-Sanchez, J. M. & J. Alba-Tercedor, 2002. Ecology of the native and introduced crayfishes Austropotamobius pallipes and Procambarus clarkii in southern Spain and implications for conservation of the native species. Biological Conservation 105: 75–80.CrossRefGoogle Scholar
  34. Gutiérrez-Yurrita, P. J. & C. Montes, 1999. Bioenergetics and phenology of reproduction of the introduced red swamp crayfish, Procambarus clarkii, in Doñana National Park, Spain, and implications for species management. Freshwater Biology 42: 561–574.CrossRefGoogle Scholar
  35. Gutiérrez-Yurrita, P. J., G. Sancho, M. A. Bravo, A. Baltanas & C. Montes, 1998. Diet of the red swamp crayfish Procambarus clarkii in natural ecosystems of the Doñana National Park temporary fresh-water marsh (Spain). Journal of Crustacean Biology 18: 120–127.CrossRefGoogle Scholar
  36. Gutzmer, M. P. & J. R. Tomasso, 1985. Nitrite toxicity to the crayfish Procambarus-clarkii. Bulletin of Environmental Contamination and Toxicology 34: 369–376.PubMedCrossRefGoogle Scholar
  37. Hermoso, V., M. Clavero, F. Blanco-Garrido & J. Prenda, 2011. Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss. Ecological Applications 21: 175–188.PubMedCrossRefGoogle Scholar
  38. Holdich, D. M., J. D. Reynolds, C. Souty-Grosset & P. J. Sibley, 2009. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowledge and Management of Aquatic Ecosystems 11: 394–395.Google Scholar
  39. Ilhéu, M., J. M. Bernardo & S. Fernandes, 2007. Predation of invasive crayfish on aquatic vertebrates: the effect of Procambarus clarkii on fish assemblages in Mediterranean temporary streams. In: Biological Invaders in Inland Waters: Profiles, Distribution and Threats, Chap. 5. Springer, Dordrecht: 543–558.Google Scholar
  40. Johnston, K. & B. J. Robson, 2009. Habitat use by five sympatric Australian freshwater crayfish species (Parastacidae). Freshwater Biology 54: 1629–1641.CrossRefGoogle Scholar
  41. Karr, J. R., 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21–27.CrossRefGoogle Scholar
  42. Keller, T. A. & P. A. Moore, 2000. Context-specific behavior: crayfish size influences crayfish-fish interactions. Journal of the North American Benthological Society 19: 344–351.CrossRefGoogle Scholar
  43. Lapointe, N. W. R., J. T. Thorson & P. Angermeier, 2012. The role of natural and anthropogenic drivers of watershed invasibility in riverine ecosystems. Biological Invasions. doi: 10.1007/s10530-012-0204-2.
  44. Larson, E. R. & J. D. Olden, 2008. Do schools and golf courses represent emerging pathways for crayfish invasions? Aquatic Invasions 3: 465–468.CrossRefGoogle Scholar
  45. Legendre, L. & P. Legendre, 1998. Numerical Ecology, 2nd ed. Elsevier Science, Amsterdam.Google Scholar
  46. Leprieur, F., O. Beauchard, S. Blanchet, T. Oberdorff & S. Brosse, 2008. Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biology 6: 404–410.Google Scholar
  47. Leunda, P. M., B. Elvira, F. Ribeiro, R. Miranda, J. Oscoz, M. J. Alves & M. J. Collares-Pereira, 2009. International standardization of common names for iberian endemic freshwater fishes. Limnetica 28: 189–202.Google Scholar
  48. Levin, B. A., J. Freyhof, Z. Lajbner, S. Perea, A. Abdoli, M. Gaffaroğlu, M. Özuluğ, H. R. Rubenyan, V. B. Salnikov & I. Doadrio, 2011. Phylogenetic relationships of the algae scraping cyprinid genus Capoeta (Teleostei: Cyprinidae). Molecular Phylogenetics and Evolution 62(1): 542–549.PubMedCrossRefGoogle Scholar
  49. Light, T. & M. P. Marchetti, 2007. Distinguishing between invasions and habitat changes as drivers of diversity loss among California’s freshwater fishes. Conservation Biology 21: 434–446.PubMedCrossRefGoogle Scholar
  50. Mac Nally, R., 2002. Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodiversity and Conservation 11: 1397–1401.CrossRefGoogle Scholar
  51. Maceda-Veiga, A. 2012 Towards the conservation of freshwater fish: Iberian Rivers as an example of threats and management practices. Reviews in Fish Biology and Fisheries. doi: 10.1007/s11160-012-9275-5.
  52. Maceda-Veiga, A. & A. De Sostoa, 2011. Observational evidence of the sensitivity of some fish species to environmental stressors in Mediterranean rivers. Ecological Indicators 11: 311–317.CrossRefGoogle Scholar
  53. Maceda-Veiga, A., A. Monleon-Getino, N. Caiola, F. Casals & A. De Sostoa, 2010. Changes in fish assemblages in catchments in north-eastern Spain: biodiversity, conservation status and introduced species. Freshwater Biology 55: 1734–1746.Google Scholar
  54. Marchetti, M. P., T. Light, P. B. Moyle & J. H. Viers, 2004. Fish invasions in California watersheds: testing hypotheses using landscape patterns. Ecological Applications 14: 1507–1525.CrossRefGoogle Scholar
  55. Meador, M. R., D. M. Carlisle & J. F. Coles, 2008. Use of tolerance values to diagnose water-quality stressors to aquatic biota in New England streams. Ecological Indicators 8: 718–728.CrossRefGoogle Scholar
  56. Moyle, P. B. & T. Light, 1996. Fish invasions in California: do abiotic factors determine success? Ecology 77: 1666–1670.CrossRefGoogle Scholar
  57. Murray, K. & M. M. Conner, 2009. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90: 348–355.PubMedCrossRefGoogle Scholar
  58. Olden, J. D., M. J. Kennard, F. Leprieur, P. Tedesco, K. O. Winemiller & E. García-Berthou, 2010. Conservation biogeography of freshwater fishes: recent progress and future challenges. Diversity and Distribution 16: 496–513.CrossRefGoogle Scholar
  59. Oscoz, P., P. Tomás & C. Durán, 2010. Review and new records of non-indigenous freshwater invertebrates in the Ebro River basin (Northeast Spain). Aquatic Invasions 5: 263–284.CrossRefGoogle Scholar
  60. Pedraza-Lara, C., F. Alda, S. Carranza & I. Doadrio, 2010. Mitochondrial DNA structure of the Iberian populations of the white-clawed crayfish Austropotamobius italicus italicus (Faxon, 1914). Molecular Phylogenetics and Evolution 57: 327–342.PubMedCrossRefGoogle Scholar
  61. Prat, N. & J. V. Ward, 1994. The tamed river. In Margalef, R. (ed.), Limnology Now: A Paradigm of Planetary Problems. Elsevier Science, London: 219–236.Google Scholar
  62. R DevelopmentCoreTeam, 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN3 900051-07-0.
  63. Rabeni, C. F., K. J. Collier, S. M. Parkyn & B. J. Hicks, 1997. Evaluating techniques for sampling stream crayfish (Paranephrops planifrons). New Zealand Journal of Marine Freshwater Research 31: 693–700.CrossRefGoogle Scholar
  64. Rallo, A. & L. Garcia-Arberas, 2002. Differences in abiotic water conditions between fluvial reaches and crayfish fauna in some northern rivers of the Iberian Peninsula. Aquatic Living Resources 15: 119–128.CrossRefGoogle Scholar
  65. Revelle, W., 2010. Psych: Procedures for Personality and Psychological Research. Northwestern University, Evanston, R Package Version 1.0-92.
  66. Reynolds, J. D., 2011. A review of the ecological interactions between crayfish and fish, indigenous and introduced. Knowledge and Management of Aquatic Ecosystems 401: 10.Google Scholar
  67. Rodríguez, C. F., E. Becares & M. Fernandez-Alaez, 2003. Shift from clear to turbid phase in Lake Chozas (NW Spain) due to the introduction of American red swamp crayfish (Procambarus clarkii). Hydrobiologia 506: 421–426.CrossRefGoogle Scholar
  68. Rukke, N. A., 2002. Effects of low calcium concentrations on two common freshwater crustaceans, Gammarus lacustris and Astacus astacus. Functional Ecology 16: 357–366.CrossRefGoogle Scholar
  69. Sabater, S., I. Muñoz, M. J. Feio, A. M. Romaní & M. A. S. Graça, 2009. The Iberian Rivers, Chap. 4. In Tockner, K., C. T. Robinson & U. Uehlinger (eds), Rivers of Europe. Elsevier Science and Technology, Amsterdam.Google Scholar
  70. Sánchez-Espada, S., 2004. Distribució del cranc de riu americà (Procambarus clarkii) a Catalunya: 50 pp (In Catalan).Google Scholar
  71. Sokal, R. R. & F. J. Rohlf, 1995. Biometry. W. H. Freeman and Company, New York.Google Scholar
  72. Sostoa, A., N. Caiola, D. Vinyoles, S. Sánchez & C. Franch, 2003. Development of a biotic integrity index (IBICAT) based on the use of fish as indicators of the environmental quality of the rivers of Catalonia (In Catalan). Report to the Catalan Water Agency, Barcelona.
  73. Souty-Grosset, C., D. M. Holdich, P. Y. Noël, J. D. Reynolds & P. Haffner, 2006. Atlas of Crayfish in Europe. Muséum National d’Histoire Naturelle, Paris.Google Scholar
  74. Suárez-Serrano, A., C. Alcaraz, C. Ibáñez, R. Trobajo & C. Barata, 2010. Procambarus clarkii as a bioindicator of heavy metal pollution sources in the lower Ebro River and Delta. Ecotoxicology and Environmental Safety 73: 280–286.PubMedCrossRefGoogle Scholar
  75. Tablado, Z., J. L. Tella, J. A. Sánchez-Zapata & F. Hiraldo, 2010. The paradox of the long-term positive effects of a North American crayfish on a European assemblage of predators. Conservation Biology 24: 1230–1238.PubMedCrossRefGoogle Scholar
  76. Usio, N. & C. R. Townsend, 2000. Distribution of the New Zealand crayfish Paranephrops zealandicus in relation to stream physico-chemistry, predatory fish, and invertebrate prey. New Zealand Journal of Marine and Freshwater Research 34: 557–567.CrossRefGoogle Scholar
  77. Usio, N., H. Nakajima, R. Kamiyama, I. Wakana, S. Hiruta & N. Takamura, 2006. Predicting the distribution of invasive crayfish (Pacifastacus leniusculus) in a Kusiro Moor marsh (Japan) using classification and regression trees. Ecological Research 21: 271–277.CrossRefGoogle Scholar
  78. Walsh C. & R. Mac Nally, 2008. The hier.part package. Hierarchical Partitioning. R Project for Statistical Computing.
  79. Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • A. Maceda-Veiga
    • 1
    Email author
  • A. De Sostoa
    • 1
  • S. Sánchez-Espada
    • 1
  1. 1.Department of Animal Biology (Vertebrates) & Research Institute of Biodiversity (IRBio), Faculty of BiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations