, Volume 702, Issue 1, pp 171–190 | Cite as

Spatial and temporal variability of light attenuation in large rivers of the Amazon

  • M. P. F. CostaEmail author
  • E. M. L. M. Novo
  • K. H. Telmer
Primary Research Paper


The light field and its relationship with biogeochemical variables were investigated in the Solimões, Negro, Amazon, Madeira, Uatumã, Trombetas, and Tapajós Rivers. In high suspended sediment rivers, total suspended matter is the primary control on light attenuation (r = 0.8), with colored dissolved organic matter (CDOM) being secondary (r = −0.6) due to scattering and absorption, respectively. Photosynthetically active radiation was the lowest (<100.0 μmol m−2 s−1 at the depth of half Z 1%) and was limited to depths of less than 1.0 m and confined to red light. In low suspended sediment rivers, CDOM is the primary control on light attenuation (r = 0.9). The concentrations of chlorophyll a (Chla) and CDOM cause variations among these rivers. High CDOM rivers, Negro and Uatumã, are depleted (<0.5% of incoming irradiance) of blue and green light at the depth of half Z 1%. The light spectra of low CDOM and higher Chla waters, such as the Tapajós, Uatumã, and Trombetas Rivers at rising water stage, are restricted to green and red wavelengths, and marked by high absorption at 620 and 670 nm, due to the presence of Cyanophyceae.


Light attenuation Underwater irradiance Phytoplankton Sediment Dissolved organic matter Rivers Amazon 



We wish to thank the National Science and Engineering Research Council of Canada (NSERC), the Brazilian National Institute of Space Research (Instituto Nacional de Pesquisas Espaciais-INPE), the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP grant no. 2004/12495-5 and FAPESP grant no. 2004/14086-5 to Costa and Telmer), and the University of Victoria for financial support; Dr. Bernardino Figueiredo for facilitating collaboration with FAPESP, Ricardo Rossin for assistance with analytical geochemistry, and Conrado Rudorff and Dr. Waterloo P. Filho for fieldwork assistance. The authors also thank the anonymous reviewers for the valuable suggestions which significantly improved the scientific quality of this manuscript.


  1. APHA, 1998. Standard Methods for the Examination of Water and Wastewater. APHA, Washington, DC.Google Scholar
  2. Arst, H., A. Reinart & M. Hussainov, 2000. Influence of the depth-dependence of the PAR diffuse attenuation coefficient on the computation of downward irradiance in different water bodies. Geophysica 36: 129–139.Google Scholar
  3. Arst, H., T. Noges, P. Noges & B. Paavel, 2008. Relations of phytoplankton in situ primary production, chlorophyll concentration and underwater irradiance in turbid lakes. Hydrobiologia 599: 169–176.CrossRefGoogle Scholar
  4. Bergmann, T., G. L. Fahnenstie, S. Lohrenz, D. Milliem & O. Schofield, 2004. Impacts of a recurrent resuspension event and variable phytoplankton community composition on remote sensing reflectance. Journal of Geophysical Research 109: 1–12.CrossRefGoogle Scholar
  5. Boss, E., L. Tylor, S. Gilbert, K. Gunderson, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith & M. N. Tamburii, 2009. Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters. Limnology and Oceanography: Method 7: 803–810.CrossRefGoogle Scholar
  6. Bozelli, R. L. & A. V. Garrido, 2000. Gradient of inorganic turbidity and responses to planktonic communities in an Amazonian lake, Brazil. Verhandlungen der Internationale Vereinigung für Limnologie 27: 147–151.Google Scholar
  7. Casali, S., M. C. Calijuri, B. Barbarisi, V. F. Reno, A. G. Affonso, C. Barbosa, T. S. F. Silva & E. M. L. M. Novo, 2012. Impact of the 2009 extreme water level variation on phytoplankton community structure in lower Amazon floodplain lakes. Acta Limnologica Brasiliense 23: 260–270.CrossRefGoogle Scholar
  8. Descy, J. P., H. Sarmento & H. W. Higgins, 2009. Variability of phytoplankton pigment ratio across aquatic environments. European Journal of Phycology 44: 319–330.CrossRefGoogle Scholar
  9. Devol, A. H. & J. I. Hedges, 2001. Organic matter and nutrients in the mainstem Amazon River. In McClain, M. E., R. L. Victoria & J. E. Richey (eds), The Biogeochemistry of the Amazon Basin. Oxford University Press, Oxford: 275–306.Google Scholar
  10. Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.CrossRefGoogle Scholar
  11. Dunne, T., L. A. K. Mertes, R. H. Meade, J. E. Richey & B. R. Forsberg, 1998. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Geological Society of America Bulletin 110: 450–467.CrossRefGoogle Scholar
  12. Dustan, P., 2009. Terrestrial limitations of Amazon River productivity: why the Amazon River is not green. Evolutionary Ecology Research 11: 421–432.Google Scholar
  13. EPA, 1997. Method 447.0. Determination of chlorophyll a and b and identification of other pigments of interest in marine and freshwater algae using high performance liquid chromatography with visible wavelength detection: 20 pp.Google Scholar
  14. Ertel, J. R., J. I. Hedges, A. H. Devol, J. E. Richey & M. N. Goes Ribeiro, 1986. Dissolved humic substances of the Amazon River System. Limnology and Oceanography 31: 739–754.CrossRefGoogle Scholar
  15. Fisher, T. R., 1979. Plankton and primary production in aquatic systems of the Central Amazon Basin. Comparative Biochemistry Physiology 62A: 31–38.Google Scholar
  16. Forsberg, B. F., A. H. Devol, J. E. Richey, L. Martinelli & U. dos Santos, 1988. Factors controlling nutrient distributions in Amazon lakes. Limnology and Oceanography 33: 41–56.CrossRefGoogle Scholar
  17. Furch, B., A. F. F. Corrêa, J. A. S. Nunes de Mello & K. R. Otto, 1985. Light regimes in three aquatic ecosystems of different physico-chemical properties. I. Attenuation, irradiance reflectance and comparison between downwelling, upwelling and scalar irradiances (PAR). Amazoniana 3: 411–430.Google Scholar
  18. Guenther, M. & R. Bozelli, 2004a. Effects of inorganic turbidity on the phytoplankton of an Amazonian Lake impacted by bauxite tailings. Hydrobiologia 511: 151–159.CrossRefGoogle Scholar
  19. Guenther, M. & R. Bozelli, 2004b. Factors influencing algae-clay aggregation. Hydrobiologia 523: 217–223.CrossRefGoogle Scholar
  20. INPE, 2004. Monitoramento da Floresta Amazonica Brasileira por Satélite. Projeto PRODES.Google Scholar
  21. Irion, G., W. J. Junk & J. A. S. Nunes de Mello, 1997. The large Central Amazon river floodplains near Manaus: geological, climatological, hydrological, and geomorphological aspects. In Junk, W. J. (ed.), The Central Amazon Floodplain: Ecology of a Pulsing System. Springer-Verlag, Berlin: 23–46.Google Scholar
  22. Junk, W. J. & H. J. Krambeck, 2000. Climate and hydrology. In Junk, W. J., J. J. Ohly, M. T. F. Piedade & M. G. M. Soares (eds), The Central Amazonian Floodplain: Actual Use and Options for a Sustainable Management. Backhuys Publisher, Leiden, The Netherlands: 95–108.Google Scholar
  23. Kauer, T., H. Arst & L. Tuvikene, 2010. Underwater light field and spectral distribution of attenuation depth in inland and coastal waters. Oceanologia 52: 155–170.CrossRefGoogle Scholar
  24. Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Systems. Cambridge University Press, New York.CrossRefGoogle Scholar
  25. Kirk, J. T. O., 2003. The vertical attenuation of irradiance as a function of the optical properties of the water. Limnology and Oceanography 48: 9–17.CrossRefGoogle Scholar
  26. Konhauser, K. O., W. S. Fyfe & Kronberg, B. I., 1994. Multi-element chemistry of some Amazonian waters and soils. Chemical Geology 111: 155–175.CrossRefGoogle Scholar
  27. Leite, N. K., A. V. Krusche, M. V. R. Ballester, R. L. Victoria, J. E. Richey & B. M. Gomes, 2011. Intra and interannual variability in the Madeira River water chemistry and sediment load. Biogeochemistry 105: 37–51.CrossRefGoogle Scholar
  28. Loisel, H., X. Mériaux, J. F. Berthon & A. Poteau, 2007. Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea. Limnology and Oceanography 52: 739–752.CrossRefGoogle Scholar
  29. Mantoura, R. F. C. & D. J. Repeta, 1997. Calibration methods for HPLC. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds), Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. SCOR-UNESCO, Paris: 407–428.Google Scholar
  30. Marengo, J. A., J. Tomasella, L. M. Alves, W. R. Soares & D. A. Rodriguez, 2011. The drought of 2010 in the context of historical droughts in the Amazon region. Geophysical Research Letters 38: L12703.CrossRefGoogle Scholar
  31. McClain, M. E. & H. Elsenbeer, 2001. Terrestrial inputs to Amazon streams and internal biogeochemical processing. In McClain, M., E. R. L. Victoria & J. E. Richey (eds), The Biogeochemistry of the Amazon Basin. Oxford University Press, Oxford: 185–208.Google Scholar
  32. McClain, M. E., J. E. Richey & J. A. Brandes, 1997. Dissolved organic matter and terrestrial-lotic linkages in the central Amazon basin of Brazil. Global Biogeochemical Cycles 11: 295–311.CrossRefGoogle Scholar
  33. Meade, R. H., 1994. Suspended sediments of the modern Amazon and Orinoco rivers. Quaternary International 21: 29–39.CrossRefGoogle Scholar
  34. Meade, R. H., 2007. Transcontinental moving and storage: the Orinoco and amazon rivers transfer the Andes to the Atlantic. In Gupta, A. (ed.), Large Rivers: Geomorphology and Management. Wiley, Chichester: 45–63.Google Scholar
  35. Melack, J. M. & B. R. Forsberg, 2001. Biogeochemistry of Amazon floodplain lakes and associated wetlands. In McClain, M. E., R. L. Victoria & J. E. Richey (eds), The Biogeochemistry of the Amazon Basin. Oxford University Press, Oxford: 125–274.Google Scholar
  36. Mol, J. H. & P. E. Ouboter, 2003. Downstream effects of erosion from small-scale gold mining on the instream habitat and fish community of a small neotropical rainforest stream. Conservation Biology 18: 201–214.CrossRefGoogle Scholar
  37. Moreira-Turcq, P., P. Seyler, J. L. Guyot & H. Etcheber, 2003. Export of organic carbon from the Amazon River and its main tributaries. Hydrological Processes 17: 1329–1344.CrossRefGoogle Scholar
  38. Novo, E. M. L. M., C. C. F. Barbosa, R. M. de Freitas, Y. E. Shimabukuro, J. M. Melack & W. Pereira Filho, 2006. Seasonal changes in chlorophyll distributions in the Amazon floodplain lakes derived from MODIS images. Limnology 7: 153–161.CrossRefGoogle Scholar
  39. Paavel, B., H. Arst, A. Reinart & A. Herveli, 2006. Model calculations of diffuse attenuation coefficient spectra in lake waters. Proceedings of the Estonian Academy of Sciences: Biology, Ecology 55: 61–81.Google Scholar
  40. Putz, R. & W. J. Junk, 1997. Phytoplankton and Periphyton. In Junk, W. J. (ed.), The Central Amazon Floodlpain: Ecology of a Pulsing System. Springer-Verlag, Berlin: 147–181.Google Scholar
  41. Reinart, A. & H. Arst, 1998. Relation between underwater irradiance and quantum irradiance in dependence on water transparency at different depths in the water bodies. Journal of Geophysical Research 103: 7749–7752.CrossRefGoogle Scholar
  42. Reinart, A. & A. Herlevi, 1996. Diffuse attenuation coefficient in some Estonian and Finnish lakes. Proceedings of the Estonian Academy of Sciences Biology Ecology 48: 267–283.Google Scholar
  43. Reinart, A., B. Paavel & L. Tuvikene, 2004. Effect of coloured dissolved organic matter on the attenuation of photosynthetically active radiation in Lake Peipsi. Proceedings of the Estonian Academy of Sciences Biology Ecology 53: 88–105.Google Scholar
  44. Renó, V. F., 2010. Deforestation assessment on the lower Amazon floodplain using Landsat images observation from 1975 to 2008. MSc Thesis, Brazilian Institute for Space Research, São Paulo.Google Scholar
  45. Richey, J. E., R. H. Meade, E. Salati, A. H. Devol, C. F. Nordin & U. Santos, 1986. Water discharge and suspended sediment concentrations in the Amazon River: 1982–1984. Water Resources Researcher 22: 756–764.CrossRefGoogle Scholar
  46. Roland, F. & F. A. Esteves, 1998. Effects of bauxite tailing on PAR attenuation in an Amazonian crystalline water lake. Hydrobiologia 377: 1–7.CrossRefGoogle Scholar
  47. Rudorff, C. M., L. S. Galvao & E. M. L. M. Novo, 2009. Reflectance of floodplain water bodies using EO-1 Hyperion data from high and receding flood periods of the Amazon River. Remote Sensing of Environment 30: 2713–2720.Google Scholar
  48. Sa, L. L. C., J. M. S. Vieira, R. A. Mendes, S. C. C. Pinheiro, E. R. Vale, F. A. S. Alves, I. M. Jesus, E. C. O. Santos & V. B. Costa, 2010. Occurrence of toxic cyanobacterial bloom in the left margin of the Tapajos River, in the municipality of Santarem (Para State, Brazil). Revista Pan-Amazon Saude 1: 159–166.Google Scholar
  49. Saliot, A., L. Mejanelle, P. Scribe, J. Fillaux, C. Pepe, A. Jaboud & J. Dagout, 2001. Particulate organic carbon, sterols, fatty acids and pigments in the Amazon River system. Biogeochemistry 53: 70–103.CrossRefGoogle Scholar
  50. Squires, M. M. & F. W. L. Lesack, 2003. Spatial and temporal patterns of light attenuation among lakes of the Mackenzie Delta. Freshwater Biology 43: 1–20.CrossRefGoogle Scholar
  51. Sun, D., Y. Li, Q. Wang, J. Gao, H. Lv, C. Le & C. Huang, 2009. Light scattering properties and their relation to the biochemical composition of turbid productive waters: a case study of Lake Taihu. Applied Optics 48: 1979–1989.PubMedCrossRefGoogle Scholar
  52. Telmer, K., M. P. F. Costa, R. S. Angélica, E. S. Araujo & Y. Maurice, 2006. The source and fate of sediment and mercury in the Tapajos River, Para, Brazilian Amazon: ground- and space-based evidence. Journal of Environmental Management 81: 101–113.PubMedCrossRefGoogle Scholar
  53. Thomas, S. M., C. Neill, L. A. Deegan, A. V. Krusche, V. M. Ballester & R. L. Victoria, 2004. Influences of land use and stream size on particulate and dissolved materials in a small Amazonian stream network. Biogeochemistry 68: 135–151.CrossRefGoogle Scholar
  54. Tudesque, L., G. Grenouillet, M. Gevrey, K. Khazraie & S. Brosse, 2012. Influence of small-scale gold mining on French Guiana streams: are diatom assemblages valid disturbance sensors? Ecological Indicators 14: 100–106.CrossRefGoogle Scholar
  55. Walker, I., 1990. Ecologia e biologia dos igapós e iagarpés. Ciência Hoje 11: 44–53.Google Scholar
  56. Wright, S. W. & S. W. Jeffrey, 2006. Pigment markers for phytoplankton production. In Volkman, J. K. (ed.), Marine Organic Matter: Biomarkers, Isotopes and DNA. The Handbook of Environmental Chemistry, Vol. 2, Part 2N. Springer-Verlag, Basel: 71–104.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. P. F. Costa
    • 1
    Email author
  • E. M. L. M. Novo
    • 2
  • K. H. Telmer
    • 3
  1. 1.Department of GeographyUniversity of VictoriaVictoriaCanada
  2. 2.Instituto Nacional de Pesquisas EspaciaisSão PauloBrazil
  3. 3.School of Earth and Ocean SciencesUniversity of VictoriaVictoriaCanada

Personalised recommendations