Advertisement

Hydrobiologia

, Volume 702, Issue 1, pp 27–43 | Cite as

Species distribution and assembly patterns of frog larvae in rainforest streams of Madagascar

  • Axel Strauß
  • Roger Daniel Randrianiaina
  • Miguel Vences
  • Julian Glos
Primary Research Paper

Abstract

Many tropical rainforests harbour species-rich assemblages of frogs and, consequently, of tadpoles. These larvae are often morphologically highly diverse, especially in their oral structures. Whether this might represent an important axis of ecological partitioning in frog assemblages remains an untested hypothesis. In general, it is poorly known how diverse tadpole assemblages are organised. Using information from Madagascar’s remarkably species-rich stream tadpole assemblages, we analysed the distribution and co-occurrence of 44 species. We also assessed the importance of phylogenetic history and eco-morphological adaptation for habitat selection at two functional and two spatial levels. We show that both rare and common species exist in most morphological clusters and phylogenetic groups of tadpoles. Habitat characteristics of the streams and surrounding forest influence species composition. Whereas there is a general trend in preferring wide and deep streams without a steep slope for most species, some of the morphological clusters separate along specific habitat variables. Stream choice is influenced both by phylogenetic history and morphological adaptation. Within streams, tadpoles partition microhabitat mainly according to their morphological cluster but without phylogenetic signal. Species dissimilarities of habitat selection on both spatial scales are not correlated. We found no evidence for competition in the tadpole assemblages studied.

Keywords

Ranomafana National Park Tadpole Morphological cluster Species–habitat association Habitat choice Community Anura 

Notes

Acknowledgements

We are grateful to S. Ndriantsoa, E. Rajeriarison, T. Rajoafiarison, H. Rasolonjatovo, D. Razafindrabe, E. Reeve, and J. Solo for their contribution to fieldwork. Logistic support was provided by ValBio, MICET/ICTE, and Madagascar National Parks. Molecular identification of tadpoles was carried out with help in the lab by G. Keunecke, S. Janssen, M. Kondermann, and E. Saxinger. This study was carried out in the framework of a cooperation accord between the Département de Biologie Animale of the University of Antananarivo, Madagascar and the Technical University of Braunschweig, Germany. The Malagasy authorities kindly issued research and export permits. Financial support was granted by the Volkswagen Foundation to MV and RDR, by the Deutsche Forschungsgemeinschaft (Grant VE247/2-1) to MV, AS, and JG, and by the Deutscher Akademischer Austauschdienst to RDR.

Supplementary material

10750_2012_1301_MOESM1_ESM.pdf (76 kb)
Supplementary material 1 (PDF 77 kb)
10750_2012_1301_MOESM2_ESM.pdf (157 kb)
Supplementary material 2 (PDF 157 kb)
10750_2012_1301_MOESM3_ESM.pdf (102 kb)
Online Resource 3 Timetree depicting phylogenetic relationships and ages of divergence among species of mantellid frogs of which tadpoles were included in the analysis. Derived from the molecular tree of Wollenberg et al. (2011), based on three mitochondrial gene fragments (16S rRNA, cytochrome b, cytochdrome oxidase subunit I), with all taxa pruned that were not included in the analysis herein. Species depicted in grey and with dotted branches were not included by Wollenberg et al. (2011) and were manually added to the tree according to their phylogenetic position in the tree of Vieites et al. (2009) based on a 16S rRNA gene fragment only; note that branch lengths for those species are not to scale and thus not proportional to time (PDF 102 kb)
10750_2012_1301_MOESM4_ESM.pdf (244 kb)
Online Resource 4 Incidence values for all species of tadpoles found in the wet seasons 2007 and 2008 in Ranomafana National Park. Data are based on 29 streams that we sampled in both years; species are sorted according to their incidence in 2007 (PDF 244 kb)
10750_2012_1301_MOESM5_ESM.pdf (270 kb)
Online Resource 5 Frequency of incidence values of tadpoles in Ranomafana National Park. Each data point is coloured according to its eco-morphological guild. Data are based on the 29 repeatedly sampled streams, averaged, and rounded to the next full number (PDF 271 kb)
10750_2012_1301_MOESM6_ESM.pdf (262 kb)
Online Resource 6 Frequency of abundance values of tadpoles in Ranomafana National Park. Abundance data were grouped in steps of 5. Each data point is coloured according to its eco-morphological guild. Data are based on the 29 repeatedly sampled streams, and averaged (PDF 263 kb)
10750_2012_1301_MOESM7_ESM.pdf (178 kb)
Online Resource 7 Abundance of all species of tadpoles sampled in the wet seasons 2007 and 2008 in Ranomafana National Park. Data are based on 29 streams that we sampled in both years; species are sorted according to their abundance in 2007 (PDF 179 kb)
10750_2012_1301_MOESM8_ESM.pdf (176 kb)
Online Resource 8 Cluster dendrogramm showing co-occurrence of tadpoles based on incidence data of the 19 species that were sampled in at least 7 streams in Ranomafana National Park. Grey background boxes indicate clusters, from dark to light grey showing 2, 4, and 6 cluster (PDF 176 kb)
10750_2012_1301_MOESM9_ESM.pdf (122 kb)
Supplementary material 9 (PDF 123 kb)

References

  1. Afonso, L. G. & P. C. Eterovick, 2007a. Microhabitat choice and differential use by anurans in forest streams in southeastern Brazil. Journal of Natural History 41: 937–948.CrossRefGoogle Scholar
  2. Afonso, L. G. & P. C. Eterovick, 2007b. Spatial and temporal distribution of breeding anurans in streams in southeastern Brazil. Journal of Natural History 41: 949–963.CrossRefGoogle Scholar
  3. Alford, R. A., 1999. Ecology: resource use, competition, and predation. In McDiarmid, R. W. & R. Altig (eds), Tadpoles: The Biology of Anuran Larvae. Chicago University Press, Chicago: 240–278.Google Scholar
  4. Altig, R. & G. F. Johnston, 1989. Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetological Monographs 3: 81–109.CrossRefGoogle Scholar
  5. Altig, R. & R. W. McDiarmid, 1999. Body plan: development and morphology. In McDiarmid, R. W. & R. Altig (eds), Tadpoles: The Biology of Anuran Larvae. The University of Chicago Press, Chicago: 24–51.Google Scholar
  6. Altig, R. & R. W. McDiarmid, 2006. Descriptions and biological notes on three unusual mantellid tadpoles (Amphibia: Anura: Mantellidae) from southeastern Madagascar. Proceedings of the Biological Society of Washington 119: 418–425.CrossRefGoogle Scholar
  7. Andreone, F., G. M. Rosa, J. Noël, A. Crottini, M. Vences & C. J. Raxworthy, 2010. Living within fallen palm leaves: the discovery of an unknown Blommersia (Mantellidae: Anura) reveals a new reproductive strategy in the amphibians of Madagascar. Naturwissenschaften 97: 525–543.PubMedCrossRefGoogle Scholar
  8. Bates, D. & M. Maechler, 2010. lme4: linear mixed-effects models using S4 classes. R package version 0.999375-34 [available on internet at http://cran.r-project.org/web/packages/lme4/].
  9. Both, C., I. L. Kaefer, T. G. Santos & S. T. Z. Cechin, 2008. An austral anuran assemblage in the Neotropics: seasonal occurrence correlated with photoperiod. Journal of Natural History 42: 205–222.CrossRefGoogle Scholar
  10. Box, G. E. P. & D. R. Cox, 1964. An analysis of transformations. Journal of the Royal Statistical Society Series B (Methodological) 26: 211–252.Google Scholar
  11. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer, New York.Google Scholar
  12. Cadle, J. E. & H. W. Greene, 1993. Phylogenetic patterns, biogeography, and the ecological structure of neotropical snake assemblages. In Ricklefs, R. E. & D. Schluter (eds), Species Diversity in Ecological Communities. University of Chicago Press, Chicago: 281–293.Google Scholar
  13. De Oliveira, F. F. R. & P. C. Eterovick, 2010. Patterns of spatial distribution and microhabitat use by syntopic anuran species along permanent lotic ecosystems in the cerrado of southeastern Brazil. Herpetologica 66: 159–171.CrossRefGoogle Scholar
  14. Diamond, J. M., 1975. Assembly of species communities. In Cody, M. L. & J. M. Diamond (eds), Ecology and Evolution of Communities. Belknap Press of Harvard University Press, Cambridge: 342–444.Google Scholar
  15. Duellman, W. E., 1978. The Biology of an Equatorial Herpetofauna in Amazonian Ecuador, Vol. 65. Miscellaneous publication, University of Kansas, Museum of Natural History, Lawrence.Google Scholar
  16. Duellman, W. E., 1989. Tropical herpetofaunal communities: patterns of community structure in Neotropical rainforests. In Harmelin-Vivien, M. L. & F. Bourliere (eds), Vertebrates in Complex Tropical Systems. Springer, New York: 61–88.CrossRefGoogle Scholar
  17. Ernst, R. & M.-O. Rödel, 2006. Community assembly and structure of tropical leaf-litter anurans. Ecotropica 12: 113–129.Google Scholar
  18. Eterovick, P. C. & I. M. Barata, 2006. Distribution of tadpoles within and among Brazilian streams: the influence of predators, habitat size and heterogeneity. Herpetologica 62: 365–377.CrossRefGoogle Scholar
  19. Eterovick, P. C. & I. S. Barros, 2003. Niche occupancy in south-eastern Brazilian tadpole communities in montane-meadow streams. Journal of Tropical Ecology 19: 439–448.CrossRefGoogle Scholar
  20. Eterovick, P. C., C. R. Rievers, K. Kopp, M. Wachlevski, B. P. Franco, C. J. Dias, I. M. Barata, A. D. M. Ferreira & L. G. Afonso, 2010. Lack of phylogenetic signal in the variation in anuran microhabitat use in southeastern Brazil. Evolutionary Ecology 24: 1–24.CrossRefGoogle Scholar
  21. Fox, J. & S. Weisberg, 2011. car: companion to applied regression. R package version 2.0-10 [available on internet at http://cran.r-project.org/web/packages/car].
  22. Gascon, C., 1991. Population- and community-level analyses of species occurrences of central Amazonian rainforest tadpoles. Ecology 72: 1731–1746.CrossRefGoogle Scholar
  23. Gillespie, G. R., D. Lockie, M. P. Scroggie & D. T. Iskandar, 2004. Habitat use by stream-breeding frogs in south-east Sulawesi, with some preliminary observations on community organization. Journal of Tropical Ecology 20: 439–448.CrossRefGoogle Scholar
  24. Glaw, F. & M. Vences, 2006. Phylogeny and genus-level classification of mantellid frogs (Amphibia, Anura). Organisms, Diversity & Evolution 6: 236–253.CrossRefGoogle Scholar
  25. Glaw, F. & M. Vences, 2007. A Field Guide to the Amphibians and Reptiles of Madagascar. Vences & Glaw Verlag, Cologne.Google Scholar
  26. Glaw, F., J. Köhler, I. de la Riva, D. R. Vieites & M. Vences, 2010. Integrative taxonomy of Malagasy treefrogs: combination of molecular genetics, bioacoustics and comparative morphology reveals twelve additional species of Boophis. Zootaxa 2383: 1–82.Google Scholar
  27. Glos, J. & K. E. Linsenmair, 2005. Description of the tadpoles of Boophis doulioti and B. xerophilus from Western Madagascar with notes on larval life history and breeding ecology. Amphibia Reptilia 26: 459–466.CrossRefGoogle Scholar
  28. Glos, J., M. Teschke & M. Vences, 2007. Aquatic zebras? The tadpoles of the Madagascan treefrog Boophis schuboeae Glaw & Vences 2002 compared to those of B. ankaratra Andreone 1993. Tropical Zoology 20: 125–133.Google Scholar
  29. Grosjean, S., R.-D. Randrianiaina, A. Strauß & M. Vences, 2011a. Sand-eating tadpoles in Madagascar: morphology and ecology of the unique larvae of the treefrog Boophis picturatus. Salamandra 47: 63–76.Google Scholar
  30. Grosjean, S., A. Strauß, J. Glos, R.-D. Randrianiaina, A. Ohler & M. Vences, 2011b. Morphological uniformity in the surface-feeding tadpoles of Malagasy litter frogs, subgenus Chonomantis. Zoological Journal of the Linnean Society 162: 149–183.CrossRefGoogle Scholar
  31. Henning, C. & B. Hausdorf, 2010. prabclus: functions for clustering of presence–absence and abundance data. R package version 2.2-2 [available on internet at http://cran.r-project.org/web/packages/prabclus].
  32. Hero, J. M., W. E. Magnusson, C. F. D. Rocha & C. P. Catterall, 2001. Antipredator defenses influence the distribution of amphibian prey species in the central Amazon rain forest. Biotropica 33: 131–141.Google Scholar
  33. Heyer, W. R., 1973. Ecological interactions of frog larvae at a seasonal tropical location in Thailand. Journal of Herpetology 7: 337–361.CrossRefGoogle Scholar
  34. Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.Google Scholar
  35. Inger, R. F., 1969. Organization of communities of frogs along small rain forest streams in Sarawak. Journal of Animal Ecology 38: 123–148.CrossRefGoogle Scholar
  36. Inger, R. F. & R. K. Colwell, 1977. Organization of contiguous communities of amphibians and reptiles in Thailand. Ecological Monographs 47: 229–253.CrossRefGoogle Scholar
  37. Inger, R. F. & H. K. Voris, 1993. A comparison of amphibian communities through time and from place to place in Bornean forests. Journal of Tropical Ecology 9: 409–433.CrossRefGoogle Scholar
  38. Inger, R. F., H. K. Voris & K. J. Frogner, 1986. Organization of a community of tadpoles in rain forest streams in Borneo. Journal of Tropical Ecology 2: 193–205.CrossRefGoogle Scholar
  39. Ivlev, V. S., 1961. Experimental Ecology of the Feeding of Fishes. Yale University Press, New Haven.Google Scholar
  40. Magnusson, W. E. & J. M. Hero, 1991. Predation and the evolution of complex oviposition behaviour in Amazon rainforest frogs. Oecologia 86: 310–318.CrossRefGoogle Scholar
  41. Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2009. vegan: community ecology package. R package version 1.15-4 [available on internet at http://cran.r-project.org/web/packages/vegan].
  42. Parmelee, J. R., 1999. Trophic ecology of a tropical anuran assemblage. Scientific Papers, Natural History Museum, The University of Kansas 11: 1–59.Google Scholar
  43. Parris, K. M. & M. A. McCarthy, 1999. What influences the structure of frog assemblages at forest streams? Austral Ecology 24: 495–502.CrossRefGoogle Scholar
  44. Petchey, O. L., A. Hector & K. J. Gaston, 2004. How do different measures of functional diversity perform? Ecology 85: 847–857.CrossRefGoogle Scholar
  45. R Development Core Team, 2009. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna [available on internet at http://www.R-project.org].
  46. Raharivololoniaina, L., S. Grosjean, N. R. Raminosoa, F. Glaw & M. Vences, 2006. Molecular identification, description, and phylogenetic implications of the tadpoles of 11 species of Malagasy treefrogs, genus Boophis. Journal of Natural History 40: 1449–1480.CrossRefGoogle Scholar
  47. Randrianiaina, R.-D., R. N. Antúnez, J. Canitz, F. Forth, I. Lemme, B. Rodríguez, H. Rinas, R. Thänert, P. Tröger, N. Westphal, A. Willim, K. C. Wollenberg, A. Strauß & M. Vences, 2009a. Vogue or adaptive character? A tadpole’s goatee helps to distinguish two cryptic treefrog species of the genus Boophis. Herpetology Notes 2: 165–173.Google Scholar
  48. Randrianiaina, R.-D., L. Raharivololoniaina, C. Preuss, A. Strauß, F. Glaw, M. Teschke, J. Glos, N. Raminosoa & M. Vences, 2009b. Descriptions of the tadpoles of seven species of Malagasy treefrogs, genus Boophis. Zootaxa 2021: 23–41.Google Scholar
  49. Randrianiaina, R.-D., A. Strauß, J. Glos, F. Glaw & M. Vences, 2011a. Diversity, external morphology and reverse taxonomy in the specialized tadpoles of Malagasy river bank frogs of the subgenus Ochthomantis (genus Mantidactylus). Contributions to Zoology 80: 17–65.Google Scholar
  50. Randrianiaina, R. D., A. Strauß, J. Glos & M. Vences, 2012. Diversity of the strongly rheophilous tadpoles of Malagasy tree frogs, genus Boophis (Anura, Mantellidae), and identification of new candidate species via larval DNA sequence and morphology. Zookeys 178: 59–124.PubMedCrossRefGoogle Scholar
  51. Randrianiaina, R. D., K. C. Wollenberg, T. R. Hiobiarilanto, A. Strauß, J. Glos & M. Vences, 2011b. Nidicolous tadpoles rather than direct development in Malagasy frogs of the genus Gephyromantis. Journal of Natural History 45: 2871–2900.CrossRefGoogle Scholar
  52. Sarkar, D., 2008. lattice: lattice graphics. R package version 0.17-17 [available on internet at http://cran.r-project.org/web/packages/lattice].
  53. Strauß, A., E. Reeve, R.-D. Randrianiaina, M. Vences & J. Glos, 2010. The world’s richest tadpole communities show functional redundancy and low functional diversity: ecological data on Madagascar’s stream-dwelling amphibian larvae. BMC Ecology 10: 12.PubMedCrossRefGoogle Scholar
  54. Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton.Google Scholar
  55. Toft, C. A., 1980. Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment. Oecologia 45: 131–141.CrossRefGoogle Scholar
  56. Vejarano, S., M. Thomas & M. Vences, 2006. Comparative larval morphology in Madagascan frogs of the genus Guibemantis (Amphibia: Mantellidae). Zootaxa 1329: 39–57.Google Scholar
  57. Venables, W. & B. Ripley, 2010. MASS library (R package version 7.3-5 [available on internet at http://cran.r-project.org/web/packages/MASS].
  58. Vences, M., F. Glaw & W. Böhme, 1998. Evolutionary correlates of microphagy in alkaloid-containing frogs (Amphibia: Anura). Zoologischer Anzeiger 236: 217–230.Google Scholar
  59. Vences, M., M. Thomas, A. van der Meijden, Y. Chiari & D. R. Vieites, 2005. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology 2: 5.PubMedCrossRefGoogle Scholar
  60. Vences, M., Y. Chiari, M. Teschke, R.-D. Randrianiaina, L. Raharivololoniaina, P. Bora, D. R. Vieites & F. Glaw, 2008. Which frogs are out there? A preliminary evaluation of survey techniques and identification reliability of Malagasy amphibians. In Andreone, F. (ed.), A Conservation Strategy for the Amphibians of Madagascar—Monografie XLV. Museo Regionale di Scienze Naturali, Torino: 233–252.Google Scholar
  61. Vences, M., F. Glaw, J. Köhler & K. C. Wollenberg, 2010. Molecular phylogeny, morphology and bioacoustics reveal five additional species of arboreal microhylids of the genus Anodonthyla from Madagascar. Contributions to Zoology 79: 1–32.Google Scholar
  62. Vieites, D. R., K. C. Wollenberg, F. Andreone, J. Köhler, F. Glaw & M. Vences, 2009. Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proceedings of the National Academy of Sciences of the United States of America 106: 8267–8272.PubMedCrossRefGoogle Scholar
  63. Vitt, L. J. & J. P. Caldwell, 1994. Resource utilization and guild structure of small vertebrates in the Amazon forest leaf litter. Journal of Zoology 234: 463–476.CrossRefGoogle Scholar
  64. Wells, K. D., 2007. The Ecology and Behavior of Amphibians. The University of Chicago Press, Chicago.Google Scholar
  65. Wollenberg, K. C., D. R. Vieites, F. Glaw & M. Vences, 2011. Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. BMC Evolutionary Biology 11: 217.PubMedCrossRefGoogle Scholar
  66. Zimmerman, B. L. & D. Simberloff, 1996. An historical interpretation of habitat use by frogs in a Central Amazonian forest. Journal of Biogeography 23: 27–46.CrossRefGoogle Scholar
  67. Zuur, A. F., E. N. Ieno-Graham & G. M. Smith, 2007. Analysing Ecological Data. Springer, New York.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Axel Strauß
    • 1
    • 2
  • Roger Daniel Randrianiaina
    • 1
    • 3
  • Miguel Vences
    • 1
  • Julian Glos
    • 4
  1. 1.Zoologisches InstitutTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Institut für Genetik Ludwig-Maximilians-Universität MünchenMartinsriedGermany
  3. 3.Département de Biologie AnimaleUniversité d’AntananarivoAntananarivoMadagascar
  4. 4.Zoological InstituteUniversity of HamburgHamburgGermany

Personalised recommendations