, Volume 702, Issue 1, pp 5–13 | Cite as

Trophic analysis of two subtropical South American freshwater crabs using stable isotope ratios

  • Edward D. BurressEmail author
  • Michael M. Gangloff
  • Lynn Siefferman
Primary Research Paper


Crustaceans with crayfish- and crab-morphologies do not co-occur often. However, the crab families Aeglidae (crayfish morphology) and Trichodactylidae (crab morphology) are sympatric in many subtropical South American streams. We investigated the trophic status of Aegla uruguayana (Aeglidae) and Trichodactylus panoplus (Trichodactylidae) in a South American subtropical piedmont river (Cuareim River, Uruguay) using δ13C and δ15N ratios. We estimated the relative importance of prey items using a five-source mixing model. Stable isotope analysis revealed that the two crabs have different trophic niches. Three fractionation rates (−1, 0, and +1 ‰) influenced the estimated assimilation (%) of prey items to consumers. However, the relative importance of prey items was unaffected. A. uruguayana showed an ontogenetic shift from herbivore–detritivore to omnivore. Shared morphology between crayfishes and aeglids likely facilitates similar trophic roles; however, A. uruguayana occupies a much lower trophic position than is typical for crayfishes. T. panoplus is a strict herbivore–detritivore. In contrast to tropical crabs, they do not engage in carnivory or exploit terrestrial subsidies. In subtropical South American streams, aeglids may be the functional equivalent of crayfishes, whereas trichodactylids may fill a trophic role atypical for freshwater crabs.


Mixing model Trophic niche Aegla Trichodactylus Crustacean 



We are grateful to Alejandro Duarte, Wilson S. Serra, Marcelo Loureiro, Jordan Holcomb, and Felipe Cantera for assistance with fieldwork associated with this research. We thank Michael D. Madritch for assistance with sample preparation and the Bergós family for kindly allowing us access to the study site. Alan P. Covich provided beneficial feedback on an earlier version of the manuscript. We also thank two anonymous reviewers for their comments that improved the manuscript. This research was funded by the Office of Student Research at Appalachian State University, the Paul V. Loiselle Conservation Fund and Sigma Xi. Collections were made under DINARA permit number 202/1383/2010.


  1. Anderson, C. & G. Cabana, 2007. Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. Journal of the North American Benthological Society 26: 273–285.CrossRefGoogle Scholar
  2. Bengston, J. R., M. A. Evans-White & K. B. Gibo, 2008. Effects of grazing minnows and crayfish on stream ecosystem structure and function. Journal of the North American Benthological Society 27: 772–782.CrossRefGoogle Scholar
  3. Benke, A. C., J. B. Wallace, J. W. Harrison & J. W. Koebel, 2001. Food web quantification using secondary production analysis: predaceous invertebrates of the snag habitat in a subtropical river. Freshwater Biology 46: 329–346.CrossRefGoogle Scholar
  4. Benstead, J. P., J. G. March, B. Fry, K. C. Ewel & C. M. Pringle, 2006. Testing IsoSource: stable isotope analysis of a tropical fishery with diverse organic matter sources. Ecology 87: 326–333.PubMedCrossRefGoogle Scholar
  5. Bondar, C. A., K. Bottriell, K. Zeron & J. S. Richardson, 2005. Does trophic position of the omnivorous signal crayfish (Pacifastacus leniusculus) in a stream food web vary with life history stage or density? Canadian Journal of Fisheries and Aquatic Sciences 62: 2632–2639.CrossRefGoogle Scholar
  6. Bond-Buckup, G., C. G. Jara, M. Pérez-Losada, L. Buckup & K. A. Crandall, 2008. Global diversity of crabs (Aeglidae: Anomura: Decapoda) in freshwater. Hydrobiologia 595: 267–273.CrossRefGoogle Scholar
  7. Boulton, A. J., L. Boyero, A. P. Covich, M. Dobson, S. Lake, & R. Pearson, 2008. Are tropical streams ecologically different from temperate streams? Chapter 9. In Dudgeon, D. (ed.), Tropical Stream Ecology. Academic Press, San Diego, CA: 257–284.Google Scholar
  8. Bücker, F. R., Gonçalves. G. Bond-Buckup & A. S. Melo, 2008. Effect of environmental variables on the distribution of two freshwater crabs (Anomura: Aeglidae). Journal of Crustacean Biology 28: 248–251.CrossRefGoogle Scholar
  9. Bueno, A. A. P. & G. Bond-Buckup, 2004. Natural diet of Aegla platensis Schmitt and Aegla ligulata Bond-Buckup and Buckup (Crustacea, Decapoda, Aeglidae) from Brazil. Acta Limnologica Brasiliensia 16: 115–127.Google Scholar
  10. Campos, M. R., 2005. Freshwater crabs from Colombia: a taxonomic and distributional study. Academia Colombiana de Ciencias Exactas Fisicas y Naturales. Coleccion Jorge Alvarez Lleras 24: 1–363.Google Scholar
  11. Castro-Souza, T. & G. Bond-Buckup, 2004. O nicho trófico de duas espécies simpátricas de Aegla Leach (Crustacea, Aeglidae) no tributário da bacia hidrográfica do Rio Pelotas, Rio Grande do Sul, Brasil. Revista Brasileira de Zoologia 21: 805–813.CrossRefGoogle Scholar
  12. Collins, P. A., F. Giri & V. Williner, 2006. Population dynamics of Trichodactylus borellianus (Crustacea, Decapoda, Brachyura) and interactions with the aquatic vegetation of the Paraná River (South America, Argentina). Annales de Limnologie – International Journal of Limnology 42: 19–25.CrossRefGoogle Scholar
  13. Collins, P. A., V. Williner, & F. Giri, 2007. Littoral communities: macrocrustaceans. In Iriondo, M. H., L. C. Paggi & M. J. Parma (eds), The Middle Parana River. Limnology of a Subtropical Wetland. Springer-Verlag, Berlin: 277–302.Google Scholar
  14. Covich, A. P. & W. H. McDowell, 1996. The stream community. In Reagan, D. P. & R. B. Waide (eds), The Food Web of a Tropical Rain Forest. University of Chicago Press, Chicago, IL: 433–459.Google Scholar
  15. Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling. Bioscience 49: 119–127.CrossRefGoogle Scholar
  16. Crandall, K. A. & J. E. Buhay, 2008. Global diversity of crayfish (Astacidae, Cambaridae, and Parastacidae – Decapoda) in freshwater. Hydrobiologia 595: 295–301.CrossRefGoogle Scholar
  17. Creed, R. P. Jr., 1994. Direct and indirect effects of crayfish grazing in a stream community. Ecology 75: 2091–2103.CrossRefGoogle Scholar
  18. Creed, R. P. Jr., & J. M. Reed, 2004. Ecosystem engineering by a crayfish in a headwater stream community. Journal of the North American Benthological Society 23: 224–236.CrossRefGoogle Scholar
  19. Cross, W. F., A. P. Covich, T. A. Crowl, J. P. Benstead & A. Ramirez, 2008. Secondary production, longevity and resource consumption rates of freshwater shrimps in two tropical streams with contrasting geomorphology and food web structure. Freshwater Biology 53: 2504–2519.CrossRefGoogle Scholar
  20. DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica at Cosmochimica Acta 45: 341–351.CrossRefGoogle Scholar
  21. Dobson, M., 2004. Freshwater crabs in Africa. Freshwater Forum 21: 3–26.Google Scholar
  22. Dobson, M., A. M. Magana, J. M. Mathooko & F. K. Ndegwa, 2002. Detritivores in Kenyan highland streams: more evidence from the paucity of shredders in the tropics? Freshwater Biology 47: 909–919.CrossRefGoogle Scholar
  23. Dobson, M., A. Magana, J. Lancaster & J. M. Mathooko, 2007. Aseasonality in the abundance and life history of an ecologically dominant freshwater crab in the Rift Valley, Kenya. Freshwater Biology 52: 215–225.CrossRefGoogle Scholar
  24. Dorn, N. J. & J. M. Wojdak, 2004. The role of omnivorous crayfish in littoral communities. Oecologia 140: 150–159.PubMedCrossRefGoogle Scholar
  25. Feminella, J. W. & C. P. Hawkins, 1995. Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. Journal of the North American Benthological Society 14: 465–509.CrossRefGoogle Scholar
  26. Feminella, J. W. & V. H. Resh, 1989. Submersed macrophytes and grazing crayfish: an experimental study of herbivory in a California freshwater marsh. Ecography 12: 1–8.CrossRefGoogle Scholar
  27. France, R., 1996. Ontogenetic shift in crayfish δ13C as a measure of land-water ecotonal coupling. Oecologia 107: 239–242.CrossRefGoogle Scholar
  28. Frantle, S. F., A. I. Dittel, S. M. Schwalm, C. E. Epifanio & M. L. Fogel, 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia 120: 416–426.CrossRefGoogle Scholar
  29. Gannes, L. Z., D. M. O’Brien & C. Martínez del Rio, 1997. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78: 1271–1276.CrossRefGoogle Scholar
  30. Gutiérez-Yurrita, P. J., G. Sancho, M. A. Bravo, A. Baltanas & C. Montes, 1998. Diet of the red swamp crayfish Procambarus clarkii in natural ecosystems of the Donana National Park temporary fresh-water March (Spain). Journal of Crustacean Biology 18: 120–127.CrossRefGoogle Scholar
  31. Hill, M. P. & J. H. O’Keefe, 1992. Some aspects of the ecology of the freshwater crab (Potammautes relatus Milne Edward) in the upper reaches of the Buffulo River, Eastern Cape Province, South Africa. Southern African Journal of Aquatic Sciences 18: 42–50.CrossRefGoogle Scholar
  32. Hoeinghaus, D. J. & S. E. Davis III, 2007. Size-based trophic shifts of saltmarsh dwelling blue crabs elucidated by dual stable C and N isotope analyses. Marine Ecology Progress Series 334: 199–204.CrossRefGoogle Scholar
  33. Hollows, J. W., C. R. Townsend & K. J. Collier, 2002. Diet of the crayfish Paranephrops zealandicus in bush and pasture streams: insights from stable isotopes and stomach analysis. New Zealand Journal of Marine and Freshwater Research 36: 129–142.CrossRefGoogle Scholar
  34. Iriondo, M. H., 1999. The origin of silt particles in the loess question. Quaternary International 62: 3–9.Google Scholar
  35. Lancaster, J., M. Dobson, A. M. Magana, A. Arnold & J. M. Mathooko, 2008. An unusual trophic subsidy and species dominance in a tropical stream. Ecology 89(8): 2325–2334.PubMedCrossRefGoogle Scholar
  36. Magalhaes, C., 2003. Families Pseudothelphusidae e Trichodactylidae. In Melo, G. A. S. (ed.) Manual de identifiçao dos Crustacea Decapoda de água doce do Brasil. Sao Poalo: Editoria Loyola: 143–287.Google Scholar
  37. March, J. G. & C. M. Pringle, 2003. Food web structure and basal resource utilization along a tropical island stream continuum, Puerto Rico. Biotropica 35: 84–93.Google Scholar
  38. Marijnissen, S. A. E., E. Michel, D. F. R. Cleary & P. B. McIntyre, 2009. Ecology and conservation status of endemic freshwater crabs in Lake Tanganyika, Africa. Biodiversity Conservation 18: 1555–1573.CrossRefGoogle Scholar
  39. Martin, J. W. & L. G. Abele, 1988. External morphology of the Genus Aegla (Crustacea: Anomura: Aeglidae). Smithsonian Contributions to Zoology 453: 1–46.CrossRefGoogle Scholar
  40. Parkyn, S. M., K. J. Collier & B. J. Hicks, 2001. New Zealand stream crayfish: functional omnivores but trophic predators? Freshwater Biology 46: 641–652.CrossRefGoogle Scholar
  41. Pérez-Losada, M., C. G. Jara, G. Bond-Buckup & K. A. Crandall, 2002. Phylogenetic relationships among the species of Aegla (Anomura: Aeglidae) freshwater crabs from Chile. Journal of Crustacean Biology 22: 304–313.CrossRefGoogle Scholar
  42. Pérez-Losada, M., G. Bond-Buckup, C. G. Jara & K. A. Crandall, 2004. Molecular systematics and biogeography of the Southern South Americans freshwater “crabs” Aegla (Decapoda: Anomura: Aeglidae) using multiple heuristic tree search approaches. Systematic Biology 53: 767–780.PubMedCrossRefGoogle Scholar
  43. Pérez-Losada, M., G. Bond-Buckup, C. G. Jara & K. A. Crandall, 2009. Conservation assessment of Southern South American freshwater ecoregions on the basis of the distribution and genetic diversity of crabs from the genus Aegla. Conservation Biology 23: 692–702.PubMedCrossRefGoogle Scholar
  44. Phillips, D. L. & J. W. Gregg, 2003. Source partitioning using stable isotopes: coping with two many variables. Oecologia 136: 261–269.PubMedCrossRefGoogle Scholar
  45. Phillips, D. L., S. D. Newsome & J. W. Gregg, 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia 144: 520–527.PubMedCrossRefGoogle Scholar
  46. Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83: 703–718.CrossRefGoogle Scholar
  47. Post, D. M., 2003. Individual variation in the timing of ontogenetic niche shifts in largemouth bass. Ecology 84: 1298–1310.CrossRefGoogle Scholar
  48. Rodríguez, G., 1986. Centers of radiation of freshwater crabs in the neotropics. In Gore, R. H. and K. L. Heck (eds), Biogeography of the Crustacea, Crustacean Issues 3. A. A. Balkema, Rotterdam/Brookfield: 51–67.Google Scholar
  49. Rudnick, D. & V. Resh, 2005. Stable isotope, mesocosm and gut contents analysis demonstrate trophic differences in two invasive decapod crustacea. Freshwater Biology 50: 1323–1336.CrossRefGoogle Scholar
  50. Santos, S., L. Ayres-Peres, R. C. F. Cardoso & C. C. Sokolowicz, 2008. Natural diet of freshwater anomuran Aegla longirostri (Crustacea, Anomura, Aegilidae). Journal of Natural History 42: 1027–1037.CrossRefGoogle Scholar
  51. Stenroth, P., N. Holmqvist, P. Nystrom, O. Berglund, P. Larsson & W. Graneli, 2008. The influence of productivity and width of littoral zone on the trophic position of a large-bodied omnivore. Oecologia 156: 681–690.PubMedCrossRefGoogle Scholar
  52. Toon, A., M. Pérez-Losada, C. E. Schweitzer, R. M. Feldmann, M. Carlson & K. A. Crandall, 2010. Gondwanan radiation of the Southern Hemisphere crayfish (Decapoda: Parastacidae): evidence from fossils and molecules. Journal of Biogeography 37: 2275–2290.CrossRefGoogle Scholar
  53. Usio, N., 2000. Effects of crayfish on leaf processing and invertebrate colonization of leaves in a headwater stream: decoupling a trophic cascade. Oecologia 124: 608–614.CrossRefGoogle Scholar
  54. Vanderklift, M. A. & S. Ponsard, 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136: 169–182.PubMedCrossRefGoogle Scholar
  55. Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115–139.PubMedCrossRefGoogle Scholar
  56. Whiteledge, G. W. & C. F. Rabeni, 1997. Energy sources and ecological roles of crayfishes in an Ozark stream: insights from stable isotopes and gut analysis. Canadian Journal of Fisheries and Aquatic Sciences 54: 2555–2562.Google Scholar
  57. Yeo, D. C. J., P. K. L. Ng, N. Cumberlidge, C. Magalhaes, S. R. Daniels & M. R. Campos, 2008. Global diversity of crabs (Crustacea: Decapoda: Brachyura) in freshwater. Hydrobiologia 595: 275–286.CrossRefGoogle Scholar
  58. Zimmerman, J. K. H. & A. P. Covich, 2003. Distribution of juvenile crabs (Epilobocera sinuatifrons) in two Puerto Rican headwater streams: effects of pool morphology and past land-use legacies. Archiv für Hydrobiologie 158: 343–357.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Edward D. Burress
    • 1
    • 2
    Email author
  • Michael M. Gangloff
    • 1
  • Lynn Siefferman
    • 1
  1. 1.Biology DepartmentAppalachian State UniversityBooneUSA
  2. 2.Department of Biological SciencesAuburn UniversityAuburnUSA

Personalised recommendations