Hydrobiologia

, Volume 712, Issue 1, pp 43–60 | Cite as

The hydro-morphological index of diversity: a tool for describing habitat heterogeneity in river engineering projects

  • Walter Gostner
  • Maria Alp
  • Anton J. Schleiss
  • Christopher T. Robinson
FORM AND FUNCTION

Abstract

We present a new hydro-morphological index of diversity (HMID), a tool aimed for use in river engineering projects and firstly developed at gravel-bed streams in Switzerland, but intended for a broader use. We carried out field work with extensive hydraulic and geomorphic data collection, conducted correlation analysis with hydro-morphological variables, formulated the HMID, and analyzed the correlation between HMID and a visual habitat assessment method. The HMID is calculated by means of the coefficient of variation of the hydraulic variables flow velocity and water depth, which have been demonstrated to sufficiently represent the hydro-morphological heterogeneity of alpine gravel-bed stream reaches. Based on numerical modeling, the HMID can be calculated easily for a comparison of different alternatives in river engineering projects and thus achieves predictive power for design decisions. HMID can be applied at a reach-related scale in engineering programs involving geomorphic measures that aim at the enhancement of habitat heterogeneity of a stream. However, the application of HMID has to be integrated with evaluations of the long-term streambed evolvements that are considered at a catchment scale and strongly related to the sediment regime of the stream under study.

Keywords

Hydromorphological diversity Hydraulic variables Geomorphic metrics Correlation analysis Gravel-bed streams Predictive tools 

Supplementary material

10750_2012_1288_MOESM1_ESM.docx (33 kb)
Supplementary material 1 (DOCX 33 kb)

References

  1. Agences de l’Eau & Ministère de l’Environnement, 1998. SEQ Physique: A System for the Evaluation of the Physical Quality of Watercourses.Google Scholar
  2. Allan, J. D. & M. M. Castillo, 2007. Stream Ecology. Structure and Function of Running Waters, 2nd ed. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
  3. Armanini, D. G., N. Horrigan, W. A. Monk, D. L. Peters & D. J. Baird, 2010. Development of a benthic macroinvertebrate flow sensitivity index for canadian rivers. River Research and Applications. doi:10.1002/rra.1389.
  4. Armstrong, J. D., P. S. Kemp, G. J. A. Kennedy, M. Ladle & N. J. Milner, 2003. Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fisheries Research 62: 143–170.CrossRefGoogle Scholar
  5. Arscott, D. B., K. Tockner, D. Nat & J. V. van der Ward, 2002. Aquatic habitat dynamics along a braided Alpine river ecosystem (Tagliamento River, Northeast Italy). Ecosystems 5: 802–814.CrossRefGoogle Scholar
  6. Barbour, M. T. & J. B. Stribling, 1991. Use of habitat assessment in evaluating the biological integrity of stream communities. In Biological Criteria: Research and Regulation: 25–38.Google Scholar
  7. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.Google Scholar
  8. Bartley, R. & I. Rutherford, 2005. Measuring the reach-scale geomorphic diversity of streams: application to a stream disturbed by a sediment slug. River Research and Applications 21: 39–59.CrossRefGoogle Scholar
  9. Bates, D. J., 2000. Comparison of select life history features in wild versus hatchery coastal cutthroat trout (Oncorhynchus clarki clarki) and the implications toward species fitness. PhD Dissertation, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.Google Scholar
  10. Beck, M. W., 1998. Comparison of the measurement and effects of habitat structure on gastropods in rocky intertidal and mangrove habitats. Marine Ecology Progress Series 169: 165–178.CrossRefGoogle Scholar
  11. Bisson, P. A., K. Sullivan & J. L. Neilson, 1998. Channel hydraulics, habitat use and body form of juvenile coho salmon, steelhead and cutthroat trout in streams. Transactions of the American Fisheries Society 117: 262–273.CrossRefGoogle Scholar
  12. Boavida, I., J. M. Santos, R. Cortes, A. Pinheiro & M. T. Ferreira, 2011. Benchmarking river habitat improvement. River Research and Applications. doi:10.1002/rra.1561.
  13. Bovee, K. D., B. L. Lamb, J. M. Bartholow, C. B. Stalnaker, J. Taylor & J. Henriksen, 1998. Stream Habitat Analysis Using the Instream Flow Incremental Methodology. Report USGS/BRD-(1998)-004. U.S. Geological Survey, Biological Resources Division Information and Technology.Google Scholar
  14. Brierley, G. J. & K. A. Fryirs, 2005. Geomorphology and River Management: Application of the River Styles Framework. Blackwell, Oxford, UK.Google Scholar
  15. Brierley, G. J. & K. A. Fryirs, 2008. Space, place and a healthy dose of realism: grounding the process of river repair. In Gumiero, M. R. & B. Fokkens (eds), 4th ECRR Conference on River Restoration, Italy, Venice S. Servolo Island. CIRF – Centro Italiano per la Riqualificazione Fluviale: 381–390.Google Scholar
  16. Buffagni, A., S. Erba & D. G. Armanini, 2009. The lentic-lotic character of Mediterranean rivers and its importance to aquatic invertebrate communities. Aquatic Sciences. doi:10.1007/s00027-009-0112-4.
  17. Bunte, K. & S. R. Abt, 2001. Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel and Cobble-Bed Streams for Analysis in Sediment Transport, Hydraulics, and Streambed Monitoring. Gen. Tech. Rep. RMRS-GTR-74. U.S. Department of Agriculture, Forest Service, Rocky Mountains Research Station, Fort Collins, CO.Google Scholar
  18. BUWAL, 1998. Methoden zur Untersuchung und Beurteilung der Fließgewässer: Modul-Stufen-Konzept. BUWAL-Reihe: Vollzug Umwelt. Bern, Bundesamt für Umwelt, Wald und Landschaft.Google Scholar
  19. Conallin, J., E. Boegh & J. K. Jensen, 2010. Instream physical habitat modelling types: an analysis as stream hydromorphological modelling tools for EU water resource managers. International Journal of River Basin Management 8: 93–107.CrossRefGoogle Scholar
  20. Dunbar, M. J., M. Warren, C. Extence, L. Baker, D. Cadman, D. J. Mould, J. Hall & R. Chadd, 2010. Interaction between macroinvertebrates, discharge and physical habitat in upland rivers. Aquatic Conservation: Marine And Freshwater Ecosystems. doi:10.1002/aqc.1089.
  21. Elosegi, A., J. Diez & M. Mutz, 2010. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 657: 199–215.CrossRefGoogle Scholar
  22. Emery, J. C., A. M. Gurnell, N. J. Clifford, G. E. Petts, I. P. Morrissey & P. J. Soar, 2003. Classifying the hydraulic performance of riffle-pool bedforms for habitat assessment and river rehabilitation design. River Research and Applications 19: 533–549.CrossRefGoogle Scholar
  23. European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council 23 October 2000: establishing a framework for community action in the field of water policy. Official Journal of the European Communities L327.Google Scholar
  24. European Commission, 2007. Directive 2007/60/EC of the European Parliament and of the Council 23 October 2007 on the assessment and management of flood risks. Official Journal of the European Communities L288/27.Google Scholar
  25. Extence, C. A., D. M. Balbi & R. P. Chadd, 1999. River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectives. Regulated Rivers: Research & Management 15: 543–574.CrossRefGoogle Scholar
  26. Faeh, R., R. Mueller, P. Rousselot, D. Vetsch, C. Volz, L. Vonwiller, R. Veprek & D. Farshi, 2006–2011. BASEMENT – Basic simulation environment for environmental flow and natural hazard simulation. Version 2.2. VAW, ETH Zurich.Google Scholar
  27. Fleischhacker, T. & K. Kern, 2002. Ecomorphological Survey of Large Rivers. German Federal Institute of Hydrology, Koblenz.Google Scholar
  28. Fryirs, K. & G. J. Brierley, 2008. The importance of reach sensitivity and catchment connectivity in river rehabilitation planning. In Gumiero, M. R. & B. Fokkens (eds), IVth ECRR International Conference on River Restoration, Italy, Venice, San Servolo Island. CIRF – Centro Italiano per la Riqualificazione Fluviale: 401–408.Google Scholar
  29. Ghanem, A., P. Steffler, F. Hicks & C. Katopodis, 1996. Two-dimensional hydraulic simulation of physical habitat conditions in flowing streams. Regulated Rivers: Research & Management 12: 185–200.CrossRefGoogle Scholar
  30. Gibbins, C. N. & R. M. Acornley, 2000. Salmonid habitat modelling studies and their contribution to the development of an ecologically acceptable release policy for Kielder Reservoir, North-East England. Regulated Rivers: Research & Management 16: 203–224.CrossRefGoogle Scholar
  31. Gostner, W., A. J. Schleiss, W. K. Annable & M. Paternolli, 2010. Gravel bar inundation frequency: an indicator for the ecological potential of a river. In Dittrich, A., J. Aberle & P. Geisenhainer (eds), Proceedings of “River Flow 2010” Conference. Bundesanstalt für Wasserbau ISBN 978-3-939230-00-7, Braunschweig: 1485–1493.Google Scholar
  32. Graham, M. H., 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84: 2809–2815.CrossRefGoogle Scholar
  33. Gurnell, A. M., G. E. Petts, D. M. Hannah, B. P. G. Smith, P. J. Edwards, J. Kollmann, J. V. Ward & K. Tockner, 2001. Riparian vegetation and island formation along the gravel-bed Fiume Tagliamento, Italy. Earth Surface Processes and Landforms 26: 31–62.CrossRefGoogle Scholar
  34. Heede, B. H. & J. N. Rinne, 1991. Hydrodynamic in fluvial morphologic processes: implications for fisheries management and research. North American Journal of Fisheries Management 9: 35–43.Google Scholar
  35. Jähnig, S. C., A. W. Lorenz & D. Hering, 2008. Morphological parameters indicating differences between single- and multiple-channel mountain rivers in Germany, in relation to their modification and recovery. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 1200–1216.CrossRefGoogle Scholar
  36. Jähnig, S. C., S. Brunzel, S. Gacek, A. W. Lorenz & D. Hering, 2009. Effects of re-braiding measures on hydromorphology, floodplain vegetation, ground beetles and benthic invertebrates in mountain rivers. Journal of Applied Ecology 46: 406–416.CrossRefGoogle Scholar
  37. Jähnig, S. C., K. Brabec, A. Buffagni, S. Erba, A. W. Lorenz, T. Ofenböck, P. F. M. Verdonschot & D. Hering, 2010. A comparative analysis of restoration measures and their effects on hydromorphology and benthic invertebrates in 26 central and southern European rivers. Journal of Applied Ecology 47: 671–680.CrossRefGoogle Scholar
  38. Jorde, K., M. Schneider & F. Zöllner, 2000. Analysis of instream habitat quality – preference functions and fuzzy models. In Hu, W. (ed.), Stochastic Hydraulics 2000. Balkema, Rotterdam: 671–680.Google Scholar
  39. Jowett, I. G., 1997. Instream flow methods: a comparison of approaches. Regulated Rivers: Research and Management 13: 115–127.CrossRefGoogle Scholar
  40. Jungwirth, M., S. Muhar & S. Schmutz, 2002. Re-establishing and assessing ecological integrity in riverine landscapes. Freshwater Biology 47: 867–887.CrossRefGoogle Scholar
  41. Jungwirth, M., G. Haidvogl, O. Moog, S. Muhar & S. Schmutz, 2003. Angewandte Fischökologie an Fließgewässern. Facultas Universitätsverlag, Wien.Google Scholar
  42. Kern, K., 1992. Restoration of lowland rivers: the German experience. In Carling, P. A. & G. E. Petts (eds), Lowland Floodplain Rivers: Geomorphological Perspectives. John Wiley & Sons Ltd., Chichester, UK: 279–297.Google Scholar
  43. Kondolf, G. M., M. W. Smeltzer & S. Railsbach, 2001. Design and performance of a channel reconstruction project in a coastal California gravel-bed stream. Environmental Management 28: 761–776.PubMedCrossRefGoogle Scholar
  44. Kondolf, G. M., S. Anderson, R. Lave, L. Pagano, A. Merenlender & E. S. Bernhardt, 2007. Two decades of river restoration in California: what can we learn? Restoration Ecology 15: 516–523.CrossRefGoogle Scholar
  45. Lamouroux, N. & I. G. Jowett, 2005. Generalized instream habitat models. Canadian Journal of Fisheries and Aquatic Sciences 62: 7–14.CrossRefGoogle Scholar
  46. Lamouroux, N., H. Capra & M. Pouilly, 1998. Predicting habitat suitability for lotic fish: linking statistical hydraulic models with multivariate habitat use models. Regulated Rivers: Research and Management 14: 1–11.CrossRefGoogle Scholar
  47. Larson, M. G., D. B. Booth & S. A. Morley, 2001. Effectiveness of large woody debris in stream rehabilitation projects in urban basins. Ecological Engineering 18: 211–226.CrossRefGoogle Scholar
  48. LAWA, 1999. Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland. Übersichtsverfahren. Länderarbeitsgemeinschaft Wasser, Munich.Google Scholar
  49. LAWA, 2000a. Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland. Handbuch zum Übersichtsverfahren. Länderarbeitsgemeinschaft Wasser, Munich.Google Scholar
  50. LAWA, 2000b. Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland. Verfahrensbeschreibung für Vor-Ort-Kartierungen kleiner bis mittelgroßer Fließgewässer. Länderarbeitsgemeinschaft Wasser, Munich.Google Scholar
  51. Lepori, F., D. Palm, E. Brännäs & B. Malmqvist, 2005. Does restoration of structural heterogeneity in streams enhance fish and macroinvertebrate diversity? Ecological Applications 15: 2060–2071.CrossRefGoogle Scholar
  52. Maddock, I., 1999. The importance of physical habitat assessment for evaluating river health. Freshwater Biology 41: 373–391.CrossRefGoogle Scholar
  53. Malmqvist, B. & S. Rundle, 2002. Threats to the running water ecosystems of the world. Environmental Conservation 29: 134–153.CrossRefGoogle Scholar
  54. McCormick, M. I., 1994. Comparison of field methods for measuring surface topography and their associations with a tropical reef assemblage. Marine Ecology Progress Series 112: 87–96.CrossRefGoogle Scholar
  55. Miller, S. W., P. Budy & J. C. Schmidt, 2009. Quantifying macroinvertebrate responses to in-stream habitat restoration: applications of meta-analysis to river restoration. Restoration Ecology 18: 8–19.CrossRefGoogle Scholar
  56. Minshall, G. W., 1984. Aquatic insect substratum relationships. In Resh, V. H. & D. M. Rosenberg (eds), Ecology of Aquatic Insects. Praeger Publishers, New York: 359–400.Google Scholar
  57. Moerke, A. H., K. J. Gerard, J. A. Latimore, R. A. Hellenthal & G. A. Lamberti, 2004. Restoration of an Indiana, USA, stream: bridging the gap between basic and applied lotic ecology. Journal of the North American Benthological Society 23: 647–660.CrossRefGoogle Scholar
  58. Monk, W. A., P. J. Wood, D. M. Hannah & D. A. Wilson, 2008. Macroinvertebrate community response to inter-annual and regional river flow regime dynamics. River Research and Applications 24: 988–1001.CrossRefGoogle Scholar
  59. Muhar, S., M. Schwarz, S. Schmutz & M. Jungwirth, 2000. Identification of rivers with high and good habitat quality: methodological approach and applications in Austria. Hydrobiologia 422(423): 343–358.CrossRefGoogle Scholar
  60. Negishi, J. N. & J. S. Richardson, 2003. Responses of organic matter and macroinvertebrates to placements of boulder clusters in a small stream of southwestern British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 60: 247–258.CrossRefGoogle Scholar
  61. Palmer, M. A., C. C. Hakenkamp & K. Nelson Baker, 1997. Ecological heterogeneity in streams: why variance matters. Journal of the North American Benthological Society 16: 189–202.CrossRefGoogle Scholar
  62. Palmer, M. A., E. S. Bernhardt, J. D. Allan, P. S. Lake, G. Alexander, S. Brooks, J. Carr, S. Clayton, C. N. Dahm, J. Follstad Shah, D. L. Galat, S. G. Loss, P. Goodwin, D. D. Hart, B. Hassett, R. Jenkinson, G. M. Kondolf, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano, P. Srivastava & E. Sudduth, 2005. Standards for ecologically successful river restoration. Journal of Applied Ecology 42: 208–217.CrossRefGoogle Scholar
  63. Palmer, M. A., H. L. Menninger & E. Bernhardt, 2010. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology 55: 205–222.CrossRefGoogle Scholar
  64. Parasiewicz, P., 2001. MesoHABSIM: a concept for application of instream flow models in river restoration planning. Fisheries Research 26: 6–13.Google Scholar
  65. Parsons, M., M. Thoms & R. Norris, 2002a. Australian River Assessment System: AusRivAS Physical Assessment Protocol, Monitoring River Health Initiative. Technical Report no 22, Commonwealth of Australia and University of Canberra, Canberra.Google Scholar
  66. Parsons, M., M. Thoms & R. Norris, 2002b. Australian River Assessment System. Review of Physical River Assessment Methods: A Biological Perspective. Cooperative Research Centre for Freshwater Ecology, University of Canberra, Canberra.Google Scholar
  67. Petersen Jr., R. C., 1992. The RCE: a riparian, channel and environmental inventory for small streams in the agricultural landscape. Freshwater Biology 27: 295–306.CrossRefGoogle Scholar
  68. Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross & R. M. Hughes, 1989. Rapid Bioassessment Protocols for Use in Streams and Rivers: Benthic Macroinvertebrates and Fish. EPA/444/4-89-001. U.S. Environmental Protection Agency, Office of Water, Washington.Google Scholar
  69. R Development Core Team, 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
  70. Rankin, E. T., 1995. The use of habitat assessments in water resource management programs. In Simon, W. D. T. (ed.), Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL: 181–208.Google Scholar
  71. Raven, P. J., N. T. H. Holmes, M. Naura & F. H. Dawson, 2000. Using river habitat survey for environmental assessment and catchment planning in the U.K. Hydrobiologia 422(423): 359–367.CrossRefGoogle Scholar
  72. Rossi, R. E., D. J. Mulla, A. G. Journel & E. H. Franz, 1992. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs 62: 277–314.CrossRefGoogle Scholar
  73. Schleiss, A. J., 2005. Flussbauliche Hochwasserschutzmaßnahmen und Verbesserung der Gewässerökologie – Vorschlag eines hydraulisch – morphologischen Vielfältigkeitsindexes. Wasser, Energie, Luft 97: 195–199.Google Scholar
  74. Schmedtje, U., 1996. Ökologisch begründete Festlegung von Mindestabflüssen: die zentrale Bedeutung der sohlennahen Strömungsverhältnisse. Wasserwirtschaft 86: 326–330.Google Scholar
  75. Schneider, D. C., 1994. Quantitative Ecology: Spatial and Temporal Ecology. Academic Press, San Diego.Google Scholar
  76. Siligardi, M., S. Bernabei, C. Cappelletti, E. Chierici, F. Ciutti, F. Egaddi, F. Franceschini, B. Maiolini, L. Mancini, M.R. Minciardi, C. Monauni, G. Rossi, G. Sansoni, R. Spaggiari & M. Zanetti, 2000. I. F. F. Indice di Funzionalità Fluviale. Manuale NPA.Google Scholar
  77. Simonson, D. S., J. Lyons & P. D. Kanehl, 1994. Quantifying fish habitat in streams: transect spacing, sample size, and a proposed framework. North American Journal of Fisheries Management 14: 607–615.CrossRefGoogle Scholar
  78. Statzner, B., J. A. Gore & V. H. Resh, 1988. Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society 7: 307–360.CrossRefGoogle Scholar
  79. Statzner, B., F. Kohmann & A. G. Hildrew, 1991. Calibration of FST-hemispheres against bottom shear stress in a laboratory flume. Freshwater Biology 26: 227–231.CrossRefGoogle Scholar
  80. Steffler, P. M. & J. Blackburn, 2002. River2D: Two-Dimensional Depth-Averaged Model of River Hydrodynamics and Fish Habitats. University of Alberta, Edmonton, Canada.Google Scholar
  81. Thoms, M. C., 2006. Variability in riverine ecosystems. River Research and Applications 22: 115–121.CrossRefGoogle Scholar
  82. Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.CrossRefGoogle Scholar
  83. Thorp, J. H., J. E. Flotemersch, M. D. Delong, A. F. Casper, M. C. Thoms, F. Ballantyne, B. S. Williams, B. J. O’Neill & C. S. Haase, 2010. Linking ecosystem services, rehabilitation, and river hydrogeomorphology. BioScience 60: 67–74.CrossRefGoogle Scholar
  84. Vaughan, I. P., M. Diamond, A. M. Gurnell, K. A. Hall, A. Jenkins, N. J. Milner, L. A. Naylor, D. A. Sear, G. Woodward & S. J. Ormerod, 2009. Integrating ecology with hydromorphology: a priority for river science and management. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 113–125.CrossRefGoogle Scholar
  85. Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. E. Bunn, C. A. Sullivan, C. Reidy Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.PubMedCrossRefGoogle Scholar
  86. Wallis, C., I. Maddock, F. Visser & M. Acreman, 2010. A framework for evaluating the spatial configuration and temporal dynamics of hydraulic patches. River Research and Applications. doi:10.1002/rra.1468.
  87. Wolman, M. G., 1954. A method of sampling coarse bed material. American Geophysical Union, Transactions 35: 951–956.CrossRefGoogle Scholar
  88. Woolsey, S., F. Capelli, T. Gonser, E. Hoehn, M. Hostmann, B. Junker, A. Paetzold, C. Roulier, S. Schweizer, S. D. Tiegs, K. Tockner, C. Weber & A. Peter, 2007. A strategy to assess river restoration success. Freshwater Biology 52: 752–769.CrossRefGoogle Scholar
  89. Zappia, H. & D. C. Hayes, 1998. A Demonstration of the Instream Flow Incremental Methodology, Shenandoah River, Virginia Report: 98–157. U.S. Geological Survey, Water Resources Investigations.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Walter Gostner
    • 1
  • Maria Alp
    • 2
  • Anton J. Schleiss
    • 1
  • Christopher T. Robinson
    • 2
  1. 1.Laboratory of Hydraulic Constructions (LCH)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and Technology EAWAGDübendorfSwitzerland

Personalised recommendations