Hydrobiologia

, Volume 701, Issue 1, pp 273–287 | Cite as

Influence of environmental variability on anchovy early life stages (Engraulis encrasicolus) in two different areas of the Central Mediterranean Sea

  • A. Bonanno
  • S. Zgozi
  • A. Cuttitta
  • A. El Turki
  • A. Di Nieri
  • H. Ghmati
  • G. Basilone
  • S. Aronica
  • M. Hamza
  • M. Barra
  • S. Genovese
  • F. Falco
  • L. Knittweis
  • R. Mifsud
  • B. Patti
  • T. Bahri
  • G. Giacalone
  • I. Fontana
  • G. Tranchida
  • S. Mazzola
Primary Research Paper

Abstract

The survival of early stages of small pelagic fish species (e.g. Engraulis encrasicolus) is highly dependent on environmental conditions in both spawning and nursery areas. Knowing the relationship between the mortality rates of the early stages and the environment may help to study and model recruitment fluctuations. During the summer of 2006, two consecutive oceanographic cruises were carried out in the Central Mediterranean sea (CMED) in two different areas: the western Libyan waters and the Sicilian–Maltese waters. For the first time a nearly synoptic comparison between the two border areas of the CMED is performed. In spite of a higher overall egg density in the Sicilian–Maltese waters, there was a higher density of anchovy larvae in Libyan waters. The comparison between the oceanographic datasets singled out different circulation patterns and different characteristics of water masses, which helped to explain the differences in density of the spawning products in the two areas. A Lagrangian transport model was used to evaluate the effects of major oceanographic features on offshore egg and larval transport. The results of the model simulations and the nutritional conditions, as indicated by lipid, carbohydrate and protein contents, support the hypothesis that the western Libyan waters may represent a more favourable nursery ground compared to the Sicilian–Maltese waters in terms of environmental conditions and food availability.

Keywords

Anchovy Larval habitat Larval nutritional condition Larval mortality 

Notes

Acknowledgments

This study was supported by the FAO Project MedSudMed ‘Assessment and Monitoring of the Fishery Resources and the Ecosystems in the Straits of Sicily’, which was funded by the Italian Ministry MIPAAF. Mr. Fabio Massa, Coordinator of the MedSudMed Project is gratefully acknowledged for the support provided during the organization of the surveys at sea and data processing. The study was also supported by the Proreplus-Alif Project (lAboratori di testing per dispositivi eLettroacustici, sensorI oceanograFici e metodologie finalizzati al monitoraggio dello stato delle risorse biologiche del mare), which was funded by the Regione Siciliana Government (POR 2000–2006). The Libyan Authorities, through the General Authority of Marine Wealth, are gratefully acknowledged for their support. Mr. Nurredin Essarbout (MBRC, Libya) is thanked for the efforts and support he provided in the organisation of all activities. Mr. Emanuele Gentile, Master of the R/V Urania and all his crew are thanked for their work. All of the participating Institutes and scientists who were on-board are gratefully acknowledged for their involvement in the work carried out.

References

  1. Agostini, V. N. & A. Bakun, 2002. “Ocean triads” in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (example application to European anchovy, Engraulis encrasicolus). Fisheries Oceanography 11: 129–142.CrossRefGoogle Scholar
  2. Alhammoud, B., K. Beranger, L. Mortier & M. Crepon, 2005. Surface circulation of the Levantine Basin: comparison of model results with observations. Progress in Oceanography 66: 299–320.CrossRefGoogle Scholar
  3. Allain, G., P. Petitgas, P. Grellier & P. Lazure, 2003. The selection process from larval to juvenile stages of anchovy (Engraulis encrasicolus) in the Bay of Biscay investigated by Lagrangian simulations and comparative otolith growth. Fisheries Oceanography 12: 407–418.CrossRefGoogle Scholar
  4. Bakun, A., 1996. Patterns in the Ocean: Ocean Processes and Marine Population Dynamics. University of California Sea Grant, San Diego, California, USA, in cooperation with Centro de Investigaciones Biologicas de Noroeste, La Paz, Baja California Sur, Mexico: 323.Google Scholar
  5. Bailey, K. M. & E. D. Houde, 1989. Predation on eggs and larvae of marine fishes and the recruitment problem. Advances in marine Biology 25: 1–83.CrossRefGoogle Scholar
  6. Bartsch, J. & S. Coombs, 1997. A numerical model of the dispersal of blue whiting larvae, Micromesistius poutassou (Risso), in the eastern North Atlantic. Fisheries Oceanography 6: 141–154.CrossRefGoogle Scholar
  7. Basilone, G., C. Guisande, B. Patti, S. Mazzola, A. Cuttitta, A. Bonanno, A. R. Vergara & I. Maneiro, 2006. Effect of habitat conditions on reproduction of the European anchovy (Engraulis encrasicolus) in the Strait of Sicily. Fisheries Oceanography 15: 271–280.CrossRefGoogle Scholar
  8. Basilone, G., A. Bonanno, B. Patti, A. Cuttitta, G. Buscaino, G. Buffa, A. Bellante, G. Giacalone, S. Mazzola, A. Ribotti & A. Perilli, 2007. Temperature effects (SST) on the anchovy (Engraulis encrasicolus) spawner biomass evolution. In Carli, B., G. Cavarretta, M. Colacino & S. Fuzzi (eds), Clima e cambiamenti climatici: le attività di ricerca del CNR. CNR, Rome: 529–532.Google Scholar
  9. Beegle-Krause, C. J. & C. O’Connor, 2005. GNOME data formats and associated example data files. NOAA Office of Response and Restoration, Hazardous Materials Response Division, Seattle, WA.Google Scholar
  10. Béranger, K., M. Astraldi, M. Crépon, L. Mortier, G. P. Gasparini & L. Gervaso, 2004. The dynamics of the Sicily Strait: a comprehensive study from observations and models. Deep-Sea Research II: Topical Studies in Oceanography 51: 411–440.CrossRefGoogle Scholar
  11. Béranger, K., L. Mortier & M. Crépon, 2005. Seasonal variability of water transport through the Straits of Gibraltar, Sicily and Corsica derived from a high resolution model of the Mediterranean circulation. Progress in Oceanography 66: 341–364.CrossRefGoogle Scholar
  12. Bisbal, G. A. & D. A. Bengtson, 1995. Development of digestive tract in larval summer flounder. Journal of Fish Biology 47: 277–291.CrossRefGoogle Scholar
  13. Bligh, E. G. & W. J. Dyer, 1959. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911–917.PubMedCrossRefGoogle Scholar
  14. Bonanno, A., S. Goncharov, S. Mazzola, S. Popov, A. Cuttitta, B. Patti, G. Basilone, A. Di Nieri, C. Patti, S. Aronica & G. Buscaino, 2006. Acoustic evaluation of anchovy larvae distribution in relation to oceanography in the Cape Passero area (Strait of Sicily). Chemistry and Ecology 22(1): S265–S273.CrossRefGoogle Scholar
  15. Bonanno, A., S. Mazzola, G. Basilone, B. Patti, A. Cuttitta, G. Buscaino, S. Aronica, I. Fontana & S. Genovese, 2007. Influenza delle variabili ambientali sulle fluttuazioni della biomassa di sardine (Sardina pilchardus) nello Stretto di Sicilia. In Carli, B., G. Cavarretta, M. Colacino & S. Fuzzi (eds), Clima e cambiamenti climatici: le attività di ricerca del CNR. CNR, Rome: 533–536.Google Scholar
  16. Booman, C., A. Folkvord & J. R. Hunter, 1991. Responsiveness of starved northern anchovy Engraulis mordax larvae to predation attacks by adult anchovy. Fishery Bulletin 89: 707–711.Google Scholar
  17. Booth, D. J. & M. A. Hixon, 1999. Food ration and condition affect early survival of the coral reef damselfish, Stegastes partitus. Oecologia 121: 364–368.CrossRefGoogle Scholar
  18. Brankart, J. M., 1994. The MODB local quality control. Technical Report, University of Liège, Liège: 5.Google Scholar
  19. Canino, M. F., K. M. Bailey & L. S. Incze, 1991. Temporal and geographic differences in feeding and nutritional condition of walleye pollock larvae Theragra chalcogramma in Shelikof Strait, Gulf of Alaska. Marine Ecology Progress Series 79: 27–35.CrossRefGoogle Scholar
  20. Chambers, R. C. & W. C. Leggett, 1987. Size and age at metamorphosis in marine fishes: an analysis of laboratory reared winter flounder (Pseudopleuronectes americanus) with a review of variation in other species. Canadian Journal of Fisheries and Aquatic Sciences 44: 1936–1947.CrossRefGoogle Scholar
  21. Chick, J. H. & M. J. Van Den Avyle, 2000. Effects of feeding ration on larval swimming speed and responsiveness to predator attacks: implications for cohort survival. Canadian Journal of Fisheries and Aquatic Sciences 57: 106–115.CrossRefGoogle Scholar
  22. Cook, R. D. & S. Weisberg, 1982. Residuals and Influence in Regression. Chapman & Hall, New York. ISBN 041224280X.Google Scholar
  23. Crawford, R. J. M., L. V. Shannon & D. E. Pollock, 1987. The Benguela ecosystem. Part IV. The major fish and invertebrate resources. Oceanography and Marine Biology: An Annual Review 25: 353–505.Google Scholar
  24. Cury, P. & C. Roy, 1989. Optimal environmental window and pelagic fish recruitment success in upwelling areas. Canadian Journal of Fisheries and Aquatic Sciences 46: 670–680.CrossRefGoogle Scholar
  25. Cuttitta, A., V. Carini, B. Patti, A. Bonanno, G. Basilone, S. Mazzola, J. Garcìa Lafuente, A. Garcìa, G. Buscaino, L. Aguzzi, L. Rollandi, G. Morizzo & C. Cavalcante, 2003. Anchovy egg and larval distribution in relation to biological and physical oceanography in the Strait of Sicily. Hydrobiologia 503: 117–120.CrossRefGoogle Scholar
  26. Cuttitta, A., A. Arigo, G. Basilone, A. Bonanno, G. Buscaino, L. Rollandi, J. Garcia Lafuente, A. Garcia, S. Mazzola & B. Patti, 2004. Mesopelagic fish larvae species in the Strait of Sicily and their relationships to main oceanographic events. Hydrobiologia 527: 177–182.CrossRefGoogle Scholar
  27. Cuttitta, A., C. Guisande, I. Riveiro, I. Maneiro, B. Patti, A. R. Vergara, G. Basilone, A. Bonanno & S. Mazzola, 2006. Factors structuring reproductive habitat suitability of Engraulis encrasicolus in the south coast of Sicily. Journal of Fish Biology 68: 264–275.CrossRefGoogle Scholar
  28. Dubois G., & M. Saisana, 2002. Proceedings of the Annual Conference of the International Association for Mathematical Geology, Berlin, Germany: 479–484.Google Scholar
  29. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 8: 350–356.CrossRefGoogle Scholar
  30. Dulcic, J. & M. Kraljevic, 1996. Weight-length relationships for 40 fish species in the eastern Adriatic (Croatian waters). Fisheries Research 28: 243–251.CrossRefGoogle Scholar
  31. Engie, K. & T. Klinger, 2007. Modelling passive dispersal through a large estuarine system to evaluate marine reserve network connections. Estuaries and Coasts 30: 201–213.Google Scholar
  32. Frank, K. T. & W. C. Leggett, 1982. Environmental regulation of growth rate, efficiency, and swimming performance in larval capelin (Mallotus villosus), and its application to the match/mismatch hypothesis. Canadian Journal of Fisheries and Aquatic Sciences 39: 691–699.CrossRefGoogle Scholar
  33. Fyhn, H. J., 1989. First feeding of marine fish larvae: are free amino acid the source of energy? Aquaculture 80: 111–120.CrossRefGoogle Scholar
  34. García, A., D. Cortés & T. Ramírez, 1998. Daily larval growth and RNA and DNA content of the NW Mediterranean anchovy Engraulis encrasicolus and their relations to the environment. Marine Ecololgy Progress Series 166: 237–245.CrossRefGoogle Scholar
  35. Garcia Lafuente, J., A. Garcia, S. Mazzola, L. Quintanilla, J. Delgado, A. Cuttita & B. Patti, 2002. Hydrographic phenomena influencing early life stages of the Sicilian Channel anchovy. Fisheries Oceanography 11: 31–44.CrossRefGoogle Scholar
  36. Garcia Lafuente, J., J. M. Vargas, F. Criado, A. Garcia, J. Delgado & S. Mazzola, 2005. Assessing the variability of hydrographic processes influencing the life cycle of the Sicilian Channel anchovy, Engraulis encrasicolus, by satellite imagery. Fisheries Oceanography 14: 32–46.CrossRefGoogle Scholar
  37. Gasparini, G. P., A. Bonanno, S. Zgozi, G. Basilone, M. Borghini, G. Buscaino, A. Cuttitta, N. Essarbout, S. Mazzola, B. Patti, A. B. Ramadan, K. Schroeder, T. Bahri & F. Massa, 2008. Evidence of a dense water vein along the Libyan continental margin. Annales Geophysicae 26: 1–6.CrossRefGoogle Scholar
  38. Hamad, N., C. Millot & I. Taupier-Letage, 2005. A new hypothesis about the surface circulation in the eastern basin of the Mediterranean Sea. Progress in Oceanography 66: 287–298.CrossRefGoogle Scholar
  39. Hare, J. A., J. A. Quinlan, F. E. Werner, B. O. Blanton, J. J. Govoni, R. B. Forward, L. R. Settle & D. E. Hoss, 1999. Larval transport during winter in the SABRE study area: results of a coupled vertical larval behaviour-three-dimensional circulation model. Fisheries Oceanography 8: 57–76.CrossRefGoogle Scholar
  40. Hartree, E. F., 1972. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry 48: 422–427.PubMedCrossRefGoogle Scholar
  41. Heath, M. R., 1992. Field investigations of the early life stages of marine fish. Advances in Marine Biology 28: 1–174.CrossRefGoogle Scholar
  42. Hewitt, R. P., G. H. Theilacker & N. C. H. Lo, 1985. Causes of mortality in young jack mackerel. Marine Ecology Progress Series 26: 1–10.CrossRefGoogle Scholar
  43. Hinckley, S., A. J. Hermann & B. A. Megrey, 1996. Development of a spatially-explicit, individual-based model of marine fish early life history. Marine Ecology Progress Series 139: 47–68.CrossRefGoogle Scholar
  44. Houde, E. D., 1977. Abundance and potential yield of the round herring, etrumeus teres, and aspects of its early life history in the eastern Gulf Mexico. Fishery Bulletin 75: 61–89.Google Scholar
  45. Houde, E. D., 1987. Fish early life dynamics and recruitment variability. American Fisheries Society Symposium 2: 17–29.Google Scholar
  46. Houde, E. D., 1989. Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fishery Bulletin 87: 471–495.Google Scholar
  47. Houde, E. D., 2008. Emerging from Hjort’s shadow. Journal of Northwest Atlantic Fishery Science 41: 53–70.CrossRefGoogle Scholar
  48. IREPA, 2007. Osservatorio economico sulle strutture produttive della pesca marittima in Italia 2005. XIV Rapporto, Collana Irepa Ricerche, Franco Angeli edizioni, Milano 2006.Google Scholar
  49. Isaaks, E. H. & R. M. Srivastava, 1989. An Introduction to Applied Geostatistics. Oxford University Press, New York.Google Scholar
  50. Itoh, S., T. Saruwatari, H. Nishikawa, I. Yasuda, K. Komatsu, A. Tsuda, T. Setou & M. Shimizu, 2011. Environmental variability and growth histories of larval Japanese sardine (Sardinops melanostictus) and Japanese anchovy (Engraulis japonicus) near the frontal area of the Kuroshio. Fisheries Oceanography 20: 114–124.CrossRefGoogle Scholar
  51. Korres, G., N. Pinardi & A. Lascaratos, 2000. The ocean response to low frequency interannual atmospheric variability in the Mediterranean Sea. Part I: sensitivity experiments and energy analysis. Journal of Physical Oceanography 30: 705–731.Google Scholar
  52. Lasker, R., 1975. Field criteria for survival of anchovy larvae: the relation between inshore chlorophyll maximum layers and successful first feeding. Fishery Bulletin 73: 453–462.Google Scholar
  53. Leggett, W. C. & E. DeBlois, 1994. Recruitment in marine fishes: is it regulated by starvation and predation in the egg and larval stages? Netherlands Journal of Sea Research 32: 119–134.CrossRefGoogle Scholar
  54. Lermusiaux, P. F. J., 1999. Estimation and study of mesoscale variability in the Strait of Sicily. Dynamics of Atmospheres and Oceans 29: 255–303.CrossRefGoogle Scholar
  55. Lermusiaux, P. F. J. & A. R. Robinson, 2001. Features of dominant mesoscale variability, circulation patterns and dynamics in the Strait of Sicily. Deep-Sea Research I 48: 1953–1997.CrossRefGoogle Scholar
  56. Lleonart, J. & F. Maynou, 2003. Fish stock assessments in the Mediterranean: state of the art. Scientia Marina 67: 37–49.Google Scholar
  57. Lovegrove, T., 1966. The determination of the dry weight of plankton and the effect of various factors on the values obtained. In Barnes, H. (ed.), Some Contemporary Studies in Marine Science. George Allen and Unwin Ltd., London: 429–467.Google Scholar
  58. Mariani, P., B. R. MacKenzie, D. Iudicone & A. Bozec, 2010. Modelling retention and dispersion mechanisms of bluefin tuna eggs and larvae in the northwest Mediterranean Sea. Progress in Oceanography 86: 45–58.CrossRefGoogle Scholar
  59. MEDAR Group, 2002. Mediterranean and Black Sea Database of Temperature, Salinity and Biochemical Parameters and Climatological Atlas (CD-ROM). Institut Français de Recherche pour l’Exploit. De la Mer, Plouzane, France [available on internet at http://www.ifremer.fr/sismer/program/medar/].
  60. Mesa, M. G., T. P. Poe, D. M. Gadomski & J. H. Petersen, 1994. Are all prey created equal? A review and synthesis of differential predation on prey in substandard condition. Journal of Fish Biology 45: 81–96.CrossRefGoogle Scholar
  61. Methot Jr, R. D. & D. Kramer, 1979. Growth of northern anchovy, (Engraulis mordax), larvae in the sea. Fishery Bulletin of the United States 77: 413–423.Google Scholar
  62. Molcard, A., L. Gervasio, A. Griffa, G. P. Gasparini, L. Mortier & T. M. Ozgokmen, 2002. Numerical investigation of the Sicily channel dynamics: density currents and water mass advection. Journal of Marine Systems 36: 219–238.CrossRefGoogle Scholar
  63. National Oceanic and Atmospheric Administration (NOAA), 2002. General NOAA oil modelling environment (GNOME) user’s manual. NOAA, Seattle, WA.Google Scholar
  64. Palomera, I., B. Morales-Nin & J. Lleonart, 1988. Larval growth of anchovy, Engraulis encrasicolus, in the Western Mediterranean Sea. Marine Biology 99: 283–291.CrossRefGoogle Scholar
  65. Palomera, I., M. P. Olivar, J. Salat, A. Sabatés, M. Coll, A. García & B. Morales-Nin, 2007. Small pelagic fish in the NW Mediterranean Sea: an ecological review. Progress in Oceanography 74: 377–396.CrossRefGoogle Scholar
  66. Patti, B., A. Bonanno, G. Basilone, S. Goncharov, S. Mazzola, G. Buscaino, A. Cuttitta, J. Garcia Lafuente, A. Garcia, V. Palumbo & G. Cosimi, 2004. Interannual fluctuations in acoustic Biomass estimates and in landings of small pelagic fish populations in relation to hydrology in the Strait of Sicily. Chemistry and Ecology 20: 365–375.CrossRefGoogle Scholar
  67. Poulain, P. M. & E. Zambianchi, 2007. Surface circulation in the central Mediterranean Sea as deduced from Lagrangian drifters in the 1990s. Continental Shelf Research 27: 981–1001.CrossRefGoogle Scholar
  68. Robinson, A. R., J. Sellschopp, A. Warn-Varnas, W. G. Leslie, C. J. Lozano, P. J. Haley Jr, L. A. Anderson & P. F. J. Lermusiaux, 1999. The Atlantic Ionian stream. Journal of Marine Systems 20: 129–156.CrossRefGoogle Scholar
  69. Sammari, C., C. Millot, I. Taupier-Letage, A. Stefani & M. Brahim, 1999. Hydrological characteristics in the Tunisian-Sardinia-Sicily area during spring 1995. Deep-Sea Research I 46: 1671–1703.CrossRefGoogle Scholar
  70. Santos, A. M. P., A. Peliz, J. Dubert, P. B. Oliveira, M. M. Angélico & P. Ré, 2004. Impact of a winter upwelling event on the distribution and transport of sardine (Sardina pilchardus) eggs and larvae off western Iberia: a retention mechanism. Continental Shelf Research 24: 149–165.CrossRefGoogle Scholar
  71. Schwartzlose, R. A., J. Alheit, A. Bakun, T. R. Baumgartner, R. Cloete, R. J. M. Crawford, W. J. Fletcher, Y. Green-Ruiz, E. Hagen, T. Kawasaki, D. Lluch-Belda, S. E. Lluch-Cota, A. D. MacCall, Y. Matsuura, M. O. Nevarez-Martinez, R. H. Parrish, C. Roy, R. Serra, K. V. Shust, M. N. Ward & J. Z. Zuzunaga, 1999. Worldwide large-scale fluctuations of sardine and anchovy populations. South African Journal of Marine Science 21: 289–347.CrossRefGoogle Scholar
  72. Smith, P. E. & S. L. Richardson, 1977. Standard techniques for pelagic fish egg and larva surveys. FAO Technical Paper 175: 100.Google Scholar
  73. Somarakis, S. & N. Nikolioudakis, 2007. Oceanographic habitat, growth and mortality of larval anchovy (Engraulis encrasicolus) in the northern Aegean Sea (eastern Mediterranean). Marine Biology 152: 1143–1158.CrossRefGoogle Scholar
  74. Sorgente, R., A. Olita, P. Oddo, L. Fazioli & A. Ribotti, 2011. Numerical simulation and decomposition of kinetic energy in the Central Mediterranean: insight on mesoscale circulation and energy conversion. Ocean Science 7: 503–519.CrossRefGoogle Scholar
  75. Takahashi, M. & Y. Watanabe, 2004a. Growth rate dependent recruitment of Japanese anchovy, Engraulis japonicus, in the Kuroshio–Oyashio transitional waters. Marine Ecology Progress Series 266: 227–238.CrossRefGoogle Scholar
  76. Takahashi, M. & Y. Watanabe, 2004b. Developmental and growth rates during metamorphosis of Japanese anchovy Engraulis japonicus in the Kuroshio–Oyashio transitional waters. Marine Ecology Progress Series 282: 253–260.CrossRefGoogle Scholar
  77. Takahashi, M. & Y. Watanabe, 2005. Effects of temperature and food availability on growth rate during late larval stage of Japanese anchovy (Engraulis japonicus) in the Kuroshio–Oyashio transition region. Fisheries Oceanography 14: 223–235.CrossRefGoogle Scholar
  78. Takasuka, A., I. Aoki & I. Mitani, 2003. Evidence of growth-selective predation on larval Japanese anchovy Engraulis japonicus in Sagami Bay. Marine Ecology Progress Series 252: 223–238.CrossRefGoogle Scholar
  79. Takasuka, A., Y. Oozeki & I. Aoki, 2007. Optimal growth temperature hypothesis: why do anchovy flourish and sardine collapse or vice versa under the same ocean regime? Canadian Journal of Fisheries and Aquatic Sciences 64: 768–776.CrossRefGoogle Scholar
  80. Walford, J. & T. J. Lam, 1993. Development of digestive tract proteolytic enzyme activity in seabass Lates calcarifer larvae and juveniles. Aquaculture 109: 187–205.CrossRefGoogle Scholar
  81. Wang, Y. T. & W. N. Tzeng, 1999. Difference in growth rates among cohorts of Encrasicholina punctifer and Engraulis japonicus larvae in the coastal waters off Tanshui River Estuary, Taiwan, as indicated by otolith microstructure analysis. Journal of Fish Biology 54: 1002–1016.Google Scholar
  82. Werner, F. E., F. H. Page, D. R. Lynch, J. W. Loder, R. G. Lough, R. I. Perry, D. A. Greenberg & M. M. Sinclair, 1993. Influences of mean advection and simple behaviour on the distribution of cod and haddock early life stages on Georges Bank. Fishery Oceanography 2: 43–64.CrossRefGoogle Scholar
  83. Werner, F. E., R. I. Perry, R. G. Lough & C. E. Naimie, 1996. Trophodynamics and advective influences on Georges Bank larval cod and haddock. Deep Sea Research 43: 1793–1822.CrossRefGoogle Scholar
  84. Westernhagen, H., C. Freitas, G. Fürstenberz & J. Willführ-Nast, 1998. C/N data as an indicator of condition in marine fish larvae. Archive of Fishery and Marine Research 46: 165–179.Google Scholar
  85. Yin, M. C. & J. H. S. Blaxter, 1987. Escape speeds of marine fish larvae during early development and starvation. Marine Biology 96: 459–468.CrossRefGoogle Scholar
  86. Zenitani, H., 1995. Analysis of lipid components for determining the nutritional condition of sardine larvae Sardinopsis melanostictus. Fisheries Science 61: 725–726.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. Bonanno
    • 1
  • S. Zgozi
    • 2
  • A. Cuttitta
    • 1
  • A. El Turki
    • 2
  • A. Di Nieri
    • 1
  • H. Ghmati
    • 2
  • G. Basilone
    • 3
  • S. Aronica
    • 1
  • M. Hamza
    • 2
  • M. Barra
    • 1
  • S. Genovese
    • 1
  • F. Falco
    • 1
  • L. Knittweis
    • 4
  • R. Mifsud
    • 4
  • B. Patti
    • 1
  • T. Bahri
    • 5
  • G. Giacalone
    • 1
  • I. Fontana
    • 1
  • G. Tranchida
    • 1
  • S. Mazzola
    • 1
  1. 1.CNR-IAMC, UOSCapo GranitolaItaly
  2. 2.Marine Biology Research Centre (MBRC)TajuraLibya
  3. 3.CNR-IAMC, UOSMazara del ValloItaly
  4. 4.Ministry for Resources and Rural Affairs (MRRA)Fort San LucjanMalta
  5. 5.FAO-MedSudMed ProjectRomeItaly

Personalised recommendations