Advertisement

Hydrobiologia

, Volume 701, Issue 1, pp 117–127 | Cite as

Strong consequences of diet choice in a talitrid amphipod consuming seagrass and algal wrack

  • Alistair G. B. PooreEmail author
  • Kimberly M. Gallagher
Primary Research Paper

Abstract

Deposits of detached macrophytes, known as wrack, are a common feature on shore lines and can represent an important subsidy of organic material from subtidal systems to low productivity intertidal and terrestrial systems. On beaches, these support high densities of consumers that have an important role in wrack decomposition. The feeding behavior of wrack consumers is poorly known relative to the marine herbivores that consume marine macrophytes in situ. To understand how feeding behavior relates to the quality of wrack for an abundant wrack consumer, the talitrid amphipod Notorchestia sp., we test for habitat preferences, differences in feeding rates, and survival among four species of macroalgae and seagrasses in an estuary in New South Wales, Australia. Notorchestia displayed strong preferences for Sargassum sp. and Zostera capricorni as habitat, but consumed only Sargassum in feeding experiments, and only this alga supported high survival in a longer term performance assay. The differences in food quality, as measured by survival over 30 days, did not translate to differences in the abundance of amphipods colonizing each food resource in the field. Our results suggest that feeding by Notorchestia will result in the rapid loss of Sargassum in the wrack, and that other consumers or microbial degradation may be more important in the decomposition of seagrass.

Keywords

Amphipods Wrack Algae Seagrass Survival 

Notes

Acknowledgments

We thank Jessica Spies for assistance with field work, Jim Lowry for the amphipod identification, and two anonymous reviewers for comments that improved this manuscript. The research was supported by an Australian Research Council grant (DP055632) to AGBP.

References

  1. Adin, R. & P. Riera, 2003. Preferential food source utilization among stranded macroalgae by Talitrus saltator (Amphipoda, Talitridae): a stable isotopes study in the northern coast of Brittany (France). Estuarine, Coastal and Shelf Science 56: 91–98.CrossRefGoogle Scholar
  2. Behbehani, M. I. & R. A. Croker, 1982. Ecology of beach wrack in northern New England with special reference to Orchestia platensis. Estuarine, Coastal and Shelf Science 15: 611–620.CrossRefGoogle Scholar
  3. Buschmann, A. H., 1990. Intertidal macroalgae as refuge and food for Amphipoda in Central Chile. Aquatic Botany 36: 237–245.CrossRefGoogle Scholar
  4. Bustamante, R. H. & G. M. Branch, 1996. The dependence of intertidal consumers on kelp-derived organic matter on the west coast of South Africa. Journal of Experimental Marine Biology and Ecology 196: 1–28.CrossRefGoogle Scholar
  5. Cebrian, J., 1999. Patterns in the fate of production in plant communities. The American Naturalist 154: 449–468.PubMedCrossRefGoogle Scholar
  6. Cebrian, J. & J. Lartigue, 2004. Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecological Monographs 74: 237–259.CrossRefGoogle Scholar
  7. Colombini, I. & L. Chelazzi, 2003. Influence of marine allochthonous input on sandy beach communities. Oceanography and Marine Biology: An Annual Review 41: 115–159.Google Scholar
  8. Colombini, I., A. Aloia, M. Falacci, G. Pezzoli & L. Chelazzi, 2000. Temporal and spatial use of stranded wrack by the macrofauna of a tropical sandy beach. Marine Biology 136: 531–541.CrossRefGoogle Scholar
  9. Crawley, K. R. & G. A. Hyndes, 2007. The role of different types of detached macrophytes in the food and habitat choices of a surf-zone inhabiting amphipod. Marine Biology 151: 1433–1443.CrossRefGoogle Scholar
  10. Cruz-Rivera, E. & M. E. Hay, 2003. Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecological Monographs 73: 483–506.CrossRefGoogle Scholar
  11. Cyr, H. & M. L. Pace, 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361: 148–150.CrossRefGoogle Scholar
  12. Dias, N. & M. Hassall, 2005. Food, feeding and growth rates of peracarid macro-decomposers in a Ria Formosa salt marsh, southern Portugal. Journal of Experimental Marine Biology and Ecology 325: 84–94.CrossRefGoogle Scholar
  13. Duarte, C., J. M. Navarro, K. Acuña & I. Gómez, 2010. Feeding preferences of the sandhopper Orchestroidea tuberculata: the importance of algal traits. Hydrobiologia 651: 291–303.CrossRefGoogle Scholar
  14. Duarte, C., K. Acuña, J. M. Navarro & I. Gómez, 2011. Intra-plant differences in seaweed nutritional quality and chemical defenses: importance for the feeding behaviours of the intertidal amphipod Orchestroidea tuberculata. Journal of Sea Research 66: 215–221.CrossRefGoogle Scholar
  15. Duffy, J. E. & M. E. Hay, 1991. Food and shelter as determinants of food choice by an herbivorous marine amphipod. Ecology 72: 1286–1298.CrossRefGoogle Scholar
  16. Duffy, J. E. & M. E. Hay, 1994. Herbivore resistance to seaweed chemical defense: the roles of mobility and predation risk. Ecology 75: 1304–1319.CrossRefGoogle Scholar
  17. Dugan, J. E., D. M. Hubbard, M. D. McCrary & M. O. Pierson, 2003. The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches on southern California. Estuarine, Coastal and Shelf Science 58S: 25–40.CrossRefGoogle Scholar
  18. Graça, M. A., S. Y. Newell & R. T. Kneib, 2000. Grazing rates of organic matter and living fungal biomass of decaying Spartina alterniflora by three species of salt-marsh invertebrates. Marine Biology 136: 281–289.CrossRefGoogle Scholar
  19. Griffiths, C. L., J. M. E. Stenton-Dozey & K. Koop, 1983. Kelp wrack and the flow of energy through a sandy beach ecosystem. Dr. W, Junk Publishers, The Hague.Google Scholar
  20. Harrison, P. G., 1982. Control of microbial growth and of amphipod grazing by water soluble compounds from leaves of Zostera marina. Marine Biology 67: 225–230.CrossRefGoogle Scholar
  21. Heck, K. L. J., T. J. B. Carruthers, C. M. Duarte, A. R. Hughes, G. Kendrick, R. J. Orth & S. W. Williams, 2008. Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11: 1198–1210.CrossRefGoogle Scholar
  22. Ince, R., G. A. Hyndes, P. S. Lavery & M. A. Vanderklift, 2007. Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat. Estuarine, Coastal and Shelf Science 74: 77–86.CrossRefGoogle Scholar
  23. Inglis, G., 1989. The colonisation and degradation of stranded Macrocystis pyrifera (L.) C. Ag. by the macrofauna of a New Zealand sandy beach. Journal of Experimental Marine Biology and Ecology 125: 203–217.CrossRefGoogle Scholar
  24. Jędrzejczak, M. F., 2002. Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland): a short-term pilot study. Part II. Driftline effects of succession changes and colonisation of beach fauna. Oceanologia 44(3): 367–387.Google Scholar
  25. Kneib, R. T., S. Y. Newell & E. T. Hermeno, 1997. Survival, growth and reproduction of the salt-marsh amphipod Uhlorchestia spartinophila reared on natural diets of senescent and dead Spartina alterniflora leaves. Marine Biology 128: 423–431.CrossRefGoogle Scholar
  26. Lastra, M., H. M. Page, J. E. Dugan, D. M. Hubbard & I. F. Rodil, 2008. Processing of allochthonous macrophyte subsidies by sandy beach consumers: estimates of feeding rates and impacts on food resources. Marine Biology 154: 163–174.CrossRefGoogle Scholar
  27. Lopez, G. R., J. S. Levinton & L. B. Slobodkin, 1977. The effect of grazing by the detritivore Orchestia grillus on Spartina litter and its associated microbial community. Oecologia 30: 111–127.CrossRefGoogle Scholar
  28. Lyons, D. A., K. L. Van Alstyne & R. E. Scheibling, 2007. Anti-grazing activity and seasonal variation of dimethylsulfoniopropionate-associated compounds in the invasive alga Codium fragile ssp. tomentosoides. Marine Biology 153: 179–188.CrossRefGoogle Scholar
  29. Marsden, I. D., 1991a. Kelp-sandhopper interactions on a sand beach in New Zealand. I. Drift composition and distribution. Journal of Experimental Marine Biology and Ecology 152: 61–74.CrossRefGoogle Scholar
  30. Marsden, I. D., 1991b. Kelp-sandhopper interactions on a sand beach in New Zealand. II. Population dynamics of Talorchestia quoyana (Milne-Edwards). Journal of Experimental Marine Biology and Ecology 152: 75–90.CrossRefGoogle Scholar
  31. Mews, M., M. Zimmer & D. E. Jelinski, 2006. Species-specific decomposition rates of beach-cast wrack in Barkley Sound, British Columbia, Canada. Marine Ecology Progress Series 328: 155–160.CrossRefGoogle Scholar
  32. Olabarria, C., M. Incerra, J. Garrido, I. F. Rodil & F. Rossi, 2009. Intraspecific diet shift in Talitrus saltator inhabiting exposed sandy beaches. Estuarine, Coastal and Shelf Science 84: 282–288.Google Scholar
  33. Orr, M., M. Zimmer, D. E. Jelinski & M. Mews, 2005. Wrack deposition on different beach types: spatial and temporal variation in the pattern of subsidy. Ecology 86(6): 1496–1507.CrossRefGoogle Scholar
  34. Parker, J. D., J. P. Montoya & M. E. Hay, 2008. A specialist detritivore links Spartina alterniflora to salt marsh food webs. Marine Ecology Progress Series 364: 87–95.CrossRefGoogle Scholar
  35. Paul, V. J., E. Cruz-Rivera & R. W. Thacker, 2001. Chemical mediation of macroalgal-herbivore interactions: ecological and evolutionary perspectives. In McClintock, J. B. & B. J. Baker (eds), Marine Chemical Ecology. CRC Press, Boca Raton: 227–265.Google Scholar
  36. Pennings, S. C. & V. J. Paul, 1992. Effect of plant toughness, calcification, and chemistry on herbivory by Dolabella auricularia. Ecology 73: 1606–1619.CrossRefGoogle Scholar
  37. Pennings, S. C., T. H. Carefoot, M. Zimmer, J. P. Danko & A. Ziegler, 2000. Feeding preferences of supralittoral isopods and amphipods. Canadian Journal of Zoology 78: 1918–1929.CrossRefGoogle Scholar
  38. Peterson, C. H. & P. E. Renaud, 1989. Analysis of feeding preference experiments. Oecologia 80: 82–86.CrossRefGoogle Scholar
  39. Polis, G. A. & S. D. Hurd, 1996. Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. The American Naturalist 147(3): 396–423.CrossRefGoogle Scholar
  40. Poore, A. G. B. & N. A. Hill, 2005. Spatial associations among palatable and unpalatable macroalgae: a test of associational resistance with a herbivorous amphipod. Journal of Experimental Marine Biology and Ecology 326: 207–216.CrossRefGoogle Scholar
  41. Poore, A. G. & P. D. Steinberg, 1999. Preference-performance relationships and effects of host plant choice in an herbivorous marine amphipod. Ecological Monographs 69(4): 443–464.Google Scholar
  42. Poore, A. G. B., N. A. Hill & E. E. Sotka, 2008. Phylogenetic and geographic variation in host breadth and composition by herbivorous amphipods in the family Ampithoidae. Evolution 62: 21–38.PubMedGoogle Scholar
  43. Poore, A. G. B., A. H. Campbell, R. A. Coleman, G. J. Edgar, V. Jormalainen, P. L. Reynolds, E. E. Sotka, J. J. Stachowicz, R. B. Taylor, M. A. Vanderklift & J. E. Duffy, 2012. Global patterns in the impact of marine herbivores on benthic primary producers. Ecology Letters 15: 912–922.Google Scholar
  44. Porri, F., J. M. Hil & C. D. McQuaid, 2011. Associations in ephemeral systems: the lack of trophic relationships between sandhoppers and beach wrack. Marine Ecology-Progress Series 426: 253–262.CrossRefGoogle Scholar
  45. Pyke, D. A. & J. N. Thompson, 1986. Statistical analysis of survival and removal rate experiments. Ecology 67: 240–245.CrossRefGoogle Scholar
  46. Robertson, A. I. & J. S. Lucas, 1983. Food choice, feeding rates, and the turnover of macrophyte biomass by a surf-zone inhabiting amphipod. Journal of Experimental Marine Biology and Ecology 72: 99–124.CrossRefGoogle Scholar
  47. Rossi, F. & A. J. Underwood, 2002. Small-scale disturbance and increased nutrients as influences on intertidal macrobenthic assemblages: experimental burial of wrack in different intertidal environments. Marine Ecology Progress Series 241: 29–39.CrossRefGoogle Scholar
  48. Scapini, F., L. Chelazzi, I. Colombini & M. Fallaci, 1992. Surface activity, zonation and migrations of Talitrus saltator on a Mediterranean beach. Marine Biology 112: 573–581.CrossRefGoogle Scholar
  49. Serejo, C. S. & J. K. Lowry, 2008. The coastal Talitridae (Amphipoda: talitroidea) of southern and western Australia, with comments on Platorchestia platensis (Krøyer, 1845). Records of the Australian Museum 60: 161–206.CrossRefGoogle Scholar
  50. Shurin, J. B., D. S. Gruner & H. Hillebrand, 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proceedings of the Royal Society of London Series B 273: 1–9.PubMedCrossRefGoogle Scholar
  51. Spiller, D. A., J. Piovia-Scott, A. N. Wright, L. H. Yang, G. Takimoto, T. W. Schoener & T. Iwata, 2010. Marine subsidies have multiple effects on coastal food webs. Ecology 91: 1424–1434.PubMedCrossRefGoogle Scholar
  52. Steinberg, P. D. & I. van Altena, 1992. Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia. Ecological Monographs 62: 189–222.CrossRefGoogle Scholar
  53. Stenton-Dozey, J. M. E. & C. L. Griffiths, 1983. The fauna associated with kelp stranded on a sandy beach. In McLachlan, A. & T. Erasmus (eds), Sandy Beaches as Ecosystems. Dr. W. Junk Publishers, The Hague: 557–567.Google Scholar
  54. Vergés, A., M. A. Becerro, T. Alcoverro & J. Romero, 2007. Experimental evidence of chemical deterrence against multiple herbivores in the seagrass Posidonia oceanica. Marine Ecology-Progress Series 343: 107–114.CrossRefGoogle Scholar
  55. Weeks, J. M., 1993. Effects of dietary copper and zinc concentrations on feeding rates of two species of talitrid amphipods (Crustacea). Bulletin of Environmental Contamination and Toxicology 50: 883–890.PubMedCrossRefGoogle Scholar
  56. Williamson, J. E., D. G. Carson, R. de Nys & P. D. Steinberg, 2004. Demographic consequences of an ontogenetic shift by a sea urchin in response to host plant chemistry. Ecology 85: 1355–1371.CrossRefGoogle Scholar
  57. Wright, J. T., R. de Nys, A. G. B. Poore & P. D. Steinberg, 2004. Chemical defense in a marine alga: heritability and potential for selection by herbivores. Ecology 85: 2946–2959.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Alistair G. B. Poore
    • 1
    Email author
  • Kimberly M. Gallagher
    • 1
  1. 1.Evolution & Ecology Research Centre School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia

Personalised recommendations