, Volume 704, Issue 1, pp 417–436 | Cite as

Global warming and potential shift in reference conditions: the case of functional fish-based metrics

  • Maxime LogezEmail author
  • Didier Pont


The reference condition approach, advocated by the Water Framework Directive, is the basis of most currently used multimetric indices using functional traits of fish species. The ecological status of streams is assessed by measuring the deviation of the observed trait values from the theoretical values of reference conditions in the absence of anthropogenic disturbances. While reference conditions serve as baselines for ecological assessment, they vary with natural environmental conditions. Therefore, global warming appears to be a major threat to the use of current indices for diagnosing future stream conditions, as climate change is projected to modify assemblage composition, suggesting that the functional structure of fish assemblages will also be affected. The main objectives of this study are to assess the potential effect of climate change on the trait composition of fish assemblages and the consequences for the establishment of reference conditions. The results highlight the relation between environmental, especially climatic, conditions and functional traits and project the effects of climate change on trait composition. Traits based on species intolerance are expected to be most negatively affected by the projected climatic shift. The consequences for the development of multimetric indices based on fish functional traits are discussed.


IBI Climate change Riverine fish assemblages Functional trait Reference condition Water Framework Directive Local species richness 



We are grateful to all the members of the European EFI+ project (contract number 044096,, which provided all the data. This paper is a result of the WISER (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery) project funded by the European Union under the 7th Framework Programme, Theme 6 (Environment including Climate Change) (contract no. 226273),

Supplementary material

10750_2012_1250_MOESM1_ESM.doc (173 kb)
Supplementary material 1 (DOC 173 kb)


  1. Albelk, M. & E. Albek, 2009. Stream temperature trends in Turkey. Clean – Soil Air Water 37: 142–149.CrossRefGoogle Scholar
  2. Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters, 2nd ed. Kluwer, Boston.CrossRefGoogle Scholar
  3. Argillier, C., S. Caussé, M. Gevrey, S. Pédron, S. Brucet S., M. Emmrich, E. Jeppesen, T. Lauridsen, T. Mehner, M. Olin, M. Rask, P. Volta, I. Winfield, F. Kelly, T. Krause, A. Palm & K. Holmgren, 2012. Development of a fish-based index to assess the eutrophication status of European lakes. Hydrobiologia, this issue.Google Scholar
  4. Bady, P., D. Pont, M. Logez & J. Veslot, 2009. EFI+ Project. Improvement and spatial extension of the European Fish Index Deliverable 4.1: Report on the modelling of reference conditions and on the sensitivity of candidate metrics to anthropogenic pressures. Deliverable 4.2: Report on the final development and validation of the new European Fish Index and method, including a complete technical description of the new method. Final Report: 1–179.Google Scholar
  5. Bailey, R. C., M. G. Kennedy, M. Z. Dervish & R. M. Taylor, 1998. Biological assessment of freshwater ecosystems using a reference condition approach: comparing predicted and actual benthic invertebrate communities in Yukon streams. Freshwater Biology 39: 765–774.CrossRefGoogle Scholar
  6. Benjamini, Y. & D. Yekutieli, 2001. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29: 1165–1188.CrossRefGoogle Scholar
  7. Bonada, N., S. Doledec & B. Statzner, 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between Mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13: 1658–1671.CrossRefGoogle Scholar
  8. Buisson, L. & G. Grenouillet, 2009. Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Diversity and Distributions 15: 613–626.CrossRefGoogle Scholar
  9. Buisson, L., W. Thuillier, S. Lek, P. Lim & G. Grenouillet, 2008. Climate change hastens the turnover of stream fish assemblages. Global Change Biology 14: 2232–2248.CrossRefGoogle Scholar
  10. Buisson, L., W. Thuillier, N. Casajus, S. Lek & G. Grenouillet, 2010. Uncertainty in ensemble forecasting of species distribution. Global Change Biology 16: 1145–1157.CrossRefGoogle Scholar
  11. Cameron, A. C. & P. K. Trivedi, 1998. Regression Analysis of Count Data. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  12. Chevan, A. & M. Sutherland, 1991. Hierarchical partitioning. The American Statistician 45: 90–96.Google Scholar
  13. Dudoit, S. & M. J. van der Laan, 2008. Multiple Testing Procedures with Applications to Genomics. Springer Series in Statistics. Springer, New York.CrossRefGoogle Scholar
  14. Faraway, J. J., 2006. Extending the Linear Model with R. Generalized Linear, Mixed Effects and Nonparametric Regression Models. Chapman and Hall/CRC, Boca Raton, FL.Google Scholar
  15. Fausch, K. D., J. R. Karr & P. R. Yant, 1984. Regional application of an index of biotic integrity based on stream fish communities. Transactions of the American Fisheries Society 113: 39–55.CrossRefGoogle Scholar
  16. Flato, G. M. & G. J. Boer, 2001. Warming asymmetry in climate change simulations. Geophysical Research Letters 28: 195–198.CrossRefGoogle Scholar
  17. Fox, J., 2002. An R and S Plus Companion to Applied Regression. Sage, Thousand Oaks, CA.Google Scholar
  18. Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.CrossRefGoogle Scholar
  19. Goldstein, R. M. & M. R. Meador, 2004. Comparisons of fish species traits from small streams to large rivers. Transactions of the American Fisheries Society 133: 971–983.CrossRefGoogle Scholar
  20. Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell & R. A. Wood, 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16: 147–168.CrossRefGoogle Scholar
  21. Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel & R. J. Nathan, 2004. Stream Hydrology. An Introduction for Ecologists, 2nd ed. Wiley, New York.Google Scholar
  22. Graham, C. T. & C. Harrod, 2009. Implications of climate change for the fishes of the British Isles. Journal of Fish Biology 74: 1143–1205.PubMedCrossRefGoogle Scholar
  23. Grenouillet, G., D. Pont & C. Herisse, 2004. Within-basin fish assemblage structure: the relative influence of habitat versus stream spatial position on local species richness. Canadian Journal of Fisheries and Aquatic Sciences 61: 93–102.CrossRefGoogle Scholar
  24. Grenouillet, G., L. Buisson, N. Casajus & S. Lek, 2011. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34: 9–17.CrossRefGoogle Scholar
  25. Halliwell, D. B., R. W. Langdon, R. A. Daniels, J. P. Kurtenbach & R. A. Jacobson, 1999. Classification of freshwater fish species of the northeastern United States for use in the development of indices of biological integrity, with regional applications. In Simon, T. P. (ed.), Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. CRC, Boca Raton, FL: 301–333.Google Scholar
  26. Harris, J. H. & R. Silveira, 1999. Large-scale assessments of river health using an Index of Biotic Integrity with low-diversity fish communities. Freshwater Biology 41: 235–252.CrossRefGoogle Scholar
  27. Hastie, T., R. Tibshirani & J. Friedman, 2009. The Element of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer, New York.CrossRefGoogle Scholar
  28. Hawkins, C. P., Y. Cao & B. Roper, 2010. Method of predicting reference condition biota affects the performance and interpretation of ecological indices. Freshwater Biology 55: 1066–1085.CrossRefGoogle Scholar
  29. Haxton, T. J. & C. S. Findlay, 2008. Meta-analysis of the impacts of water management on aquatic communities. Canadian Journal of Fisheries and Aquatic Sciences 65: 437–447.CrossRefGoogle Scholar
  30. Hering, D., C. K. Feld, O. Moog & T. Ofenböck, 2006. Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566: 311–324.CrossRefGoogle Scholar
  31. Hering, D., A. Schmidt-Kloiber, J. Murphy, S. Lücke, C. Zamora-Muñoz, M. J. Lopez-Rodriguez, T. Huber & W. Graf, 2009. Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution pattern and ecological preferences. Aquatic Sciences 71: 3–14.CrossRefGoogle Scholar
  32. Hering, D., H. Bennion, S. Birk, A. Borja, A. Basset, J. Carstensen, L. Carvalho, R. Clarke, H. Duel, M. Dunbar, M. Elliott, A.-S. Heiskanen, S. Hellsten, P. Hendriksen, K. Irvine, E. Jeppesen, R. K. Johnson, A. Kolada, A. Lyche Solheim, O. Malve, N. Marba, J. C. Marques, J. Moe, S. Moncheva, G. Morabito, T. Noges, D. Pont, M. Pusch, S. Schmutz, A. Solimini, W. van de Bund, P.F.M. Verdonschot & C.K. Feld, 2012. Assessment and recovery of European water bodies: key messages from the WISER project. Hydrobiologia, this issue.Google Scholar
  33. Hirst, A. C., 1999. The Southern Ocean response to global warming in the CSIRO coupled ocean–atmosphere model. Environmental Modelling and Software: Special Issue on Modelling Global Climatic Change 14: 227–242.CrossRefGoogle Scholar
  34. Hirst, A. C., S. P. O’Farrell & H. B. Gordon, 2000. Comparison of a coupled ocean–atmosphere model with and without oceanic eddy-induced advection. 1. Ocean spin-up and control integrations. Journal of Climate 13: 139–163.CrossRefGoogle Scholar
  35. Hoeinghaus, D. J., K. O. Winemiller & J. S. Birnbaum, 2007. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. Journal of Biogeography 34: 324–338.CrossRefGoogle Scholar
  36. Holzer, S., 2008. European Fish Species: Taxa and Guilds Classification Regarding Fish-Based Assessment Methods. Universität für Bodenkultur, Vienna.Google Scholar
  37. Horwitz, R. J., 1978. Temporal variability patterns and the distributional patterns of stream fishes. Ecological Monographs 48: 307–321.CrossRefGoogle Scholar
  38. Hughes, R. M., P. R. Kaufmann, A. T. Herlihy, T. M. Kincaid, L. Reynolds & D. P. Larsen, 1998. A process for developing and evaluating indices of fish assemblage integrity. Canadian Journal of Fisheries & Aquatic Sciences 55: 1618–1631.CrossRefGoogle Scholar
  39. Hugueny, B., 1989. West-African rivers as biogeographic islands – species richness of fish communities. Oecologia 79: 236–243.CrossRefGoogle Scholar
  40. Ibañez, C., J. Belliard, R. M. Hughes, P. Irz, A. Kamdem-Toham, N. Lamouroux, P. A. Tedesco & T. Oberdorff, 2009. Convergence of temperate and tropical stream fish assemblages. Ecography 32: 658–670.CrossRefGoogle Scholar
  41. Illies, J., 1978. Limnofauna Europaea. Gustav Fischer Verlag, Stuttaart, NY.Google Scholar
  42. IPCC, 2007. Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland: 104 pp.Google Scholar
  43. Isaak, D. J., S. Wollrab, D. Horan & G. Chandler, 2012. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Climatic Change 113: 499–524.Google Scholar
  44. Joy, M. K. & R. G. Death, 2004. Application of the index of biotic integrity methodology to New Zealand freshwater fish communities. Environmental Management 34: 415–428.PubMedCrossRefGoogle Scholar
  45. Karr, J. R., 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21–27.CrossRefGoogle Scholar
  46. Karr, J. R., 1991. Biological integrity: a long-neglected aspect of water resource management. Ecological Applications 1: 66–84.CrossRefGoogle Scholar
  47. Karr, J. R. & E. W. Chu, 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island, Washington, DC.Google Scholar
  48. Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.CrossRefGoogle Scholar
  49. Kutner, M. H., C. J. Nachtsheim, J. Neter & W. Li, 2005. Applied Linear Statistical Models, 5th ed. McGraw-Hill/Irwin, New York.Google Scholar
  50. Lamouroux, N., N. L. Poff & P. L. Angermeier, 2002. Intercontinental convergence of stream fish community traits along geomorphic and hydraulic gradients. Ecology 83: 1792–1807.CrossRefGoogle Scholar
  51. Lassale, G., M. Béguer, L. Beaulaton & E. Rochard, 2008. Diadromous fish conservation plans need to consider global warming issues: an approach using biogeographical models. Biological Conservation 141: 1105–1118.CrossRefGoogle Scholar
  52. Lavorel, S. & E. Garnier, 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545–556.CrossRefGoogle Scholar
  53. Logez, M. & D. Pont, 2011. Development of metrics based on fish body size and species traits to assess European coldwater streams. Ecological Indicators 11: 1204–1215.CrossRefGoogle Scholar
  54. Logez, M., D. Pont & M. T. Ferreira, 2010. Do Iberian and European fish faunas exhibit convergent functional structure along environmental gradients? Journal of the North American Benthological Society 29: 1310–1323.CrossRefGoogle Scholar
  55. Logez, M., P. Bady, A. Melcher & D. Pont, 2012a. A continental-scale analysis of fish assemblage functional structure in European rivers. Ecography.Google Scholar
  56. Logez, M., P. Bady & D. Pont, 2012b. Modelling the habitat requirement of riverine fish species at the European scale: sensitivity to temperature and precipitation and associated uncertainty. Ecology of Freshwater Fish 21: 266–282.CrossRefGoogle Scholar
  57. Mac Nally, R., 2000. Regression and model building in conservation biology, biogeography and ecology: the distinction between and reconciliation of ‘predictive’ and ‘explanatory’ models. Biodiversity and Conservation 9: 655–671.CrossRefGoogle Scholar
  58. Matthews, W. J., 1998. Patterns in Freshwater Fish Ecology. Chapman and Hall, New York.CrossRefGoogle Scholar
  59. McCullagh, P. & J. A. Nelder, 1989. Generalized Linear Models, 2nd ed. Chapman and Hall, London.Google Scholar
  60. Melcher, A., S. Schmutz, G. Haidvogl & K. Moder, 2007. Spatially based methods to assess the ecological status of European fish assemblage types. Fisheries Management and Ecology 14: 453–463.CrossRefGoogle Scholar
  61. Mitchell, T. D. & P. D. Jones, 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology 25: 693–712.CrossRefGoogle Scholar
  62. Mitchell, J. F. B., T. C. Johns & C. A. Senior, 1998. Transient response to increasing greenhouse gases using models with and without flux adjustment. Hadley Centre Technical Note 2. UK Meteorological Office, London Road, Bracknell, UK.Google Scholar
  63. Mitchell, T. D., T. R. Carter, P. D. Jones, M. Hulme & M. New, 2004. A comprehensive set of high resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Working Paper 55. Tyndall Centre for Climate Change Research, Norwich, UK.Google Scholar
  64. Montgomery, D. C., E. A. Peck & G. G. Vining, 2006. Introduction to Linear Regression Analysis, 4th ed. Wiley Series in Probability and Statistics, New York.Google Scholar
  65. Muxika, I., A. Borja & J. Bald, 2007. Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Marine Pollution Bulletin 55: 16–29.PubMedCrossRefGoogle Scholar
  66. Nakicenovic, N. & R. Swart (eds), 2000. Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  67. Noble, R. A. A., I. G. Cowx, D. Goffaux & P. Kestemont, 2007. Assessing the health of European rivers using functional ecological guilds of fish communities: standardising species classification and approaches to metric selection. Fisheries Management and Ecology 14: 381–392.CrossRefGoogle Scholar
  68. Oberdorff, T., E. Guilbert & J.-C. Lucchetta, 1993. Patterns of fish species richness in the Seine River basin, France. Hydrobiologia 259: 157–167.CrossRefGoogle Scholar
  69. Oberdorff, T., J. F. Guegan & B. Hugueny, 1995. Global scale patterns of fish species richness in rivers. Ecography 18: 345–352.CrossRefGoogle Scholar
  70. Oberdorff, T., D. Pont, B. Hugueny & D. Chessel, 2001. A probabilistic model characterizing fish assemblages of French rivers: a framework for environmental assessment. Freshwater Biology 46: 399–415.CrossRefGoogle Scholar
  71. Oberdorff, T., D. Pont, B. Hugueny & J. P. Porcher, 2002. Development and validation of a fish-based index for the assessment of ‘river health’ in France. Freshwater Biology 47: 1720–1734.CrossRefGoogle Scholar
  72. Pont, D., B. Hugueny & T. Oberdorff, 2005. Modelling habitat requirement of European fishes: do species have similar responses to local and regional environmental constraints? Canadian Journal of Fisheries and Aquatic Sciences 62: 163–173.CrossRefGoogle Scholar
  73. Pont, D., B. Hugueny, U. Beier, D. Goffaux, A. Melcher, R. Noble, C. Rogers, N. Roset & S. Schmutz, 2006. Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. Journal of Applied Ecology 43: 70–80.CrossRefGoogle Scholar
  74. Pont, D., B. Hugueny & C. Rogers, 2007. Development of a fish-based index for the assessment of river health in Europe: the European Fish Index. Fisheries Management and Ecology 14: 427–439.CrossRefGoogle Scholar
  75. Pont, D., R. M. Hughes, T. R. Whittier & S. Schmutz, 2009. A predictive index of biotic integrity model for aquatic-vertebrate assemblages of western U.S. streams. Transactions of the American Fisheries Society 138: 292–305.CrossRefGoogle Scholar
  76. Pont, D. (coordinator) et al., 2011. Water Framework Directive. Intercalibration Phase 2. River Fish European Intercalibration Group. Final Report to ECOSTAT: 1–105.Google Scholar
  77. Roset, N., G. Grenouillet, D. Goffaux, D. Pont & P. Kestemont, 2007. A review of existing fish assemblage indicators and methodologies. Fisheries Management and Ecology 14: 393–405.CrossRefGoogle Scholar
  78. Segurado, P., M. T. Ferreira, P. Pinheiro & J. M. Santos, 2008. Mediterranean river assessment. Testing the response of guild-based metric, Work Package 3, Subtask 7. EFI+ Consortium – improvement and spatial extension of the European Fish Index. EU-Project Nr. 044096: 5–9.Google Scholar
  79. Shaffer, J. P., 1995. Multiple hypothesis-testing. Annual Review of Psychology 46: 561–584.CrossRefGoogle Scholar
  80. Simon, T. P. & J. Lyons, 1995. Application of the index of biotic integrity to evaluate water resource integrity in freshwater ecosystems. In Davis, W. S. & T. P. Simon (eds), Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. CRC, Boca Raton, FL: 245–262.Google Scholar
  81. Sokal, R. R. & F. J. Rohlf, 1995. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed. W.H. Freeman, New York.Google Scholar
  82. Somero, G. N., 1997. Temperature relationships: from molecules to biogeography. In Danztler, W. H. (ed.), Handbook of Physiology: Section 13 Comparative Physiology, VII, Vol. 19. Oxford University Press, Oxford: 1391–1444.Google Scholar
  83. Statzner, B., S. Dolédec & B. Hugueny, 2004. Biological trait composition of European stream invertebrate communities: assessing the effects of various trait filter types. Ecography 27: 470–488.CrossRefGoogle Scholar
  84. Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson & R. H. Norris, 2006. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications 16: 1267–1276.PubMedCrossRefGoogle Scholar
  85. Stoddard, J. L., A. T. Herlihy, D. V. Peck, R. M. Hughes, T. R. Whittier & E. Tarquinio, 2008. A process for creating multimetric indices for large-scale aquatic surveys. Journal of the North American Benthological Society 27: 878–891.CrossRefGoogle Scholar
  86. Swetnam, T. W., C. D. Allen & J. L. Betancourt, 1999. Applied historical ecology: using the past to manage for the future. Ecological Applications 9: 1189–1206.CrossRefGoogle Scholar
  87. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  88. Vehanen, T., T. Sutela & H. Korhonen, 2010. Environmental assessment of boreal rivers using fish data – a contribution to the Water Framework Directive. Fisheries Management and Ecology 17: 165–175.CrossRefGoogle Scholar
  89. Webb, B. W., 1996. Trends in water stream and river temperature. Hydrological Processes 10: 205–226.CrossRefGoogle Scholar
  90. Webb, B. W. & F. Nobilis, 1995. Long term water temperature trends in Austrian rivers. Hydrological Sciences Journal 40: 83–96.CrossRefGoogle Scholar
  91. Webb, B. W. & F. Nobilis, 2007. Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrological Sciences – Journal des Sciences Hydrologiques 52: 74–85.CrossRefGoogle Scholar
  92. Xenopoulos, M. A., D. M. Lodge, J. Alcamo, M. Marker, K. Schulze & D. P. Van Vuuren, 2005. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biology 11: 1557–1564.CrossRefGoogle Scholar
  93. Zaroban, D. W., M. P. Mulvey, T. R. Maret, R. M. Hughes & G. D. Merritt, 1999. Classification of species attributes for Pacific Northwest freshwater fishes. Northwest Science 73: 81–93.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Irstea, UR HBANAntonyFrance

Personalised recommendations