, Volume 719, Issue 1, pp 31–42 | Cite as

Hydrological extremes modulate nutrient dynamics in mediterranean climate streams across different spatial scales

  • Susana Bernal
  • Daniel von Schiller
  • Francesc Sabater
  • Eugènia Martí


Hydrology is a key factor in the terrestrial landscape that connects upland and riparian ecosystems to streams. Hydrological connectivity through the catchment and along the stream network influences not only the timing and the magnitude of terrestrial inputs to stream ecosystems, but also regulates stream metabolism and biogeochemical cycling. In mediterranean climate regions (med-regions), there is a marked seasonal alternation of dry and wet periods, and streams experience a wide range of hydrological conditions from floods to droughts. Moreover, nutrient dynamics in med-streams are highly variable within the year and between years compared to temperate streams. In this review, we explore how seasonal changes in hydrological connectivity and hydrological extremes affect nutrient cycling and transport at different spatial scales in med-catchments. We show that during the dry period, the stream network contracts more severely in med-catchments than in temperate catchments. During the contraction phase, upland-stream disconnection decreases nutrient supply from terrestrial ecosystems, while stream fragmentation increases the spatial variation of stream nutrient concentrations. Moreover, the precipitation regime typical of med-regions (with irregular distribution of precipitation and episodic large rainfall events) decreases the ability of terrestrial and aquatic biota to retain nutrients and favours nutrient export to downstream ecosystems. Altogether, this hydrological setting confers to med-streams a characteristic temporal pattern in stream nutrient dynamics that is analogous to a particular biogeochemical heartbeat with higher amplitude, variation and unpredictability than that observed in temperate streams.


Hydrological connectivity Floods Droughts Nitrogen Phosphorus Nutrient cycling Mediterranean streams 



We thank Jordi Corbera for editing Fig. 1. The work by SB and DvS was funded by the Spanish Ministry of Science and Innovation (MICINN) with Juan de la Cierva contracts JCI-2008-1777 and JCI-2010-06397. SB received funds from the Spanish Research Council (CSIC) with the contract JAEDOC027. Financial support was provided by the European Union-funded project REFRESH (FP7-ENV-2009-1-244121), the MICINN-funded project MONTES-Consolider (CSD 2008-00040), and the MEC-funded project MED_FORESTREAM (CGL2011-30590).

Supplementary material

10750_2012_1246_MOESM1_ESM.pdf (18 kb)
Online Resource 1 References and data sources for the studies included in Fig. 3.(PDF 17 kb)


  1. Acuña, V., I. Muñoz, A. Giorgi, M. Omella, F. Sabater & S. Sabater, 2005. Drought and postdrought recovery cycles in an intermittent mediterranean stream: structural and functional aspects. Journal of the North American Benthological Society 24: 919–933.CrossRefGoogle Scholar
  2. Acuña, V., A. Giorgi, I. Muñoz, F. Sabater & S. Sabater, 2007. Meteorological and riparian influences on organic matter dynamics in a forested mediterranean stream. Journal of the North American Benthological Society 26: 54–69.CrossRefGoogle Scholar
  3. Amalfitano, S., S. Fazi, A. Zoppini, A. B. Caracciolo, P. Grenni & A. Puddu, 2008. Responses of benthic bacteria to experimental drying in sediments from mediterranean temporary rivers. Microbial Ecology 55: 270–279.PubMedCrossRefGoogle Scholar
  4. Argerich, A., E. Martí, F. Sabater, M. Ribot, D. von Schiller & J. L. Riera, 2008. Combined effects of leaf litter inputs and a flood on nutrient retention in a mediterranean mountain stream during fall. Limnology and Oceanography 53: 631–641.CrossRefGoogle Scholar
  5. Austin, B. J. & E. A. Strauss, 2011. Nitrification and denitrification response to varying periods of desiccation and inundation in a western Kansas stream. Hydrobiologia 658: 183–195.CrossRefGoogle Scholar
  6. Baldwin, D. S., 1996. Effects of exposure to air and subsequent drying on the phosphate sorption characteristics of sediments from a eutrophic reservoir. Limnology and Oceanography 41: 1725–1732.CrossRefGoogle Scholar
  7. Baldwin, D. S. & A. M. Mitchel, 2000. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: a synthesis. Regulated Rivers: Research & Management 16: 457–467.CrossRefGoogle Scholar
  8. Battin, T. J., L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Martí, A. I. Packman, J. D. Newbold & F. Sabater, 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience 1: 95–99.CrossRefGoogle Scholar
  9. Bernal, S. & F. Sabater, 2012. Changes in discharge and solute dynamics between hillslope and valley-bottom intermittent streams. Hydrology and Earth System Sciences 16: 1595–1605.CrossRefGoogle Scholar
  10. Bernal, S., A. Butturini & F. Sabater, 2002. Variability of DOC and nitrate responses to storms in a small mediterranean forested catchment. Hydrology and Earth System Sciences 8: 1031–1041.CrossRefGoogle Scholar
  11. Bernal, S., A. Butturini, E. Nin, F. Sabater & S. Sabater, 2003. Leaf litter dynamics and nitrous oxide emission in a mediterranean riparian forest: implications for soil nitrogen dynamics. Journal of Environmental Quality 3: 191–197.Google Scholar
  12. Bernal, S., A. Butturini & F. Sabater, 2005. Seasonal variations of dissolved nitrogen and DOC:DON ratios in an intermittent mediterranean stream. Biogeochemistry 75: 351–372.CrossRefGoogle Scholar
  13. Bernal, S., D. von Schiller, E. Martí & F. Sabater, 2012. In-stream net uptake regulates inorganic nitrogen export from catchments under baseflow conditions. Journal of Geophysical Research-Biogeosciences. doi: 10.1029/2012JG001985.
  14. Brooks, P. D. & M. M. Lemon, 2007. Spatial variability in dissolved organic matter and inorganic nitrogen concentrations in a semiarid stream, San Pedro River, Arizona. Journal of Geophysical Research-Biogeosciences. doi: 10.1029/2006JG000262.
  15. Butturini, A. & F. Sabater, 1998. Ammonium and phosphate retention in a Mediterranean stream: hydrological versus temperature control. Canadian Journal of Fisheries and Aquatic Sciences 55: 1938–1945.Google Scholar
  16. Butturini, A., S. Bernal, S. Sabater & F. Sabater, 2002. The influence of riparian-hyporheic zone on the hydrological responses in an intermittent stream. Hydrology and Earth System Sciences 6: 515–526.CrossRefGoogle Scholar
  17. Butturini, A., S. Bernal, E. Nin, C. Hellin, L. Rivero, F. Sabater & S. Sabater, 2003. Influences of the stream groundwater hydrology on nitrate concentration in unsaturated riparian area bounded by an intermittent mediterranean stream. Water Resources Research 41: W08418. doi: 10.1029/2004WR003842.
  18. Camargo, J. A. & A. Alonso, 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International 32: 831–849.PubMedCrossRefGoogle Scholar
  19. Carbone, M. S., C. J. Still, A. R. Ambrose, T. E. Dawson, A. P. Williams, C. M. Boot, S. M. Schaeffer & J. P. Schimel, 2011. Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration. Oecologia 167: 265–278.PubMedCrossRefGoogle Scholar
  20. Cavanaugh, J. C., W. B. Richardson, E. A. Strauss & L. A. Bartsch, 2006. Nitrogen dynamics in sediment during water level manipulation on the Upper Mississippi River. River Research and Applications 22: 651–666.CrossRefGoogle Scholar
  21. Ceballos, A. & S. Schnabel, 1998. Hydrological behaviour of a small catchment in the dehesa landuse system (Extremadura, SW Spain). Journal of Hydrology 210: 146–160.CrossRefGoogle Scholar
  22. Covino, T. P. & B. L. McGlynn, 2007. Stream gains and losses across a mountain-to-valley transition: impacts on watershed hydrology and stream water chemistry. Water Resources Research 43: W10431. doi: 10.1029/2006WR005544.
  23. Dahm, C. N., N. B. Grimm, P. Marmonier, H. M. Valett & P. Vervier, 1998. Nutrient dynamics at the interface between surface waters and groundwaters. Freshwater Biology 40: 427–451.CrossRefGoogle Scholar
  24. Dahm, C. N., J. R. Cleverly, J. E. Allred Coonrod, J. R. Thibault, D. E. McDonnell & D. J. Gilroy, 2002. Evapotranspiration at the land/water interface in a semi-arid drainage basin. Freshwater Biology 47: 831–843.CrossRefGoogle Scholar
  25. Dent, C. L. & N. B. Grimm, 1999. Spatial heterogeneity of stream water nutrient concentrations over successional time. Ecology 80: 2283–2298.CrossRefGoogle Scholar
  26. Dodds, W. K., R. E. Hutson, A. C. Eichem, M. A. Evans, D. A. Gudder, K. M. Fritz & L. Gray, 1996. The relationship of floods, drying, flow and light to primary production and producer biomass in a prairie stream. Hydrobiologia 333: 151–159.CrossRefGoogle Scholar
  27. Dodds, W. K., K. Gido, M. R. Whiles, K. M. Fritz & W. J. Matthews, 2004. Life on the edge: the ecology of Great Plains prairie streams. BioScience 54: 205–216.CrossRefGoogle Scholar
  28. Everson, C. S., 2001. The water balance of a first order catchment in the montane grasslands of South Africa. Journal of Hydrology 241: 110–123.CrossRefGoogle Scholar
  29. Fisher, S. G., R. A. Sponseller & J. B. Heffernan, 2004. Horizons in stream biogeochemistry: flowpaths to progress. Ecology 85: 2369–2379.CrossRefGoogle Scholar
  30. Gallart, F., P. Llorens, J. Latron & D. Regüés, 2002. Hydological processes and their seasonal controls in a small mediterranean mountain catchment in the Pyrenees. Hydrology and Earth System Sciences 6: 527–537.CrossRefGoogle Scholar
  31. Gasith, A. & V. H. Resh, 1999. Streams in mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.CrossRefGoogle Scholar
  32. Gómez, R., V. García, R. Vidal-Abarca & L. Suárez, 2009. Effect of intermittency on N spatial variability in an arid mediterranean stream. Journal of the North American Benthological Society 28: 572–583.CrossRefGoogle Scholar
  33. Gómez, R., M. I. Arce, J. J. Sánchez & M. M. Sánchez-Montoya, 2012. The effects of drying on sediment nitrogen content in a mediterranean intermittent stream: a microcosm study. Hydrobiologia 679: 43–59.CrossRefGoogle Scholar
  34. Harms, T. K. & N. B. Grimm, 2008. Hot spots and hot moments of carbon and nitrogen dynamics in a semiarid riparian zone. Journal of Geophysical Research 113: G01020. doi: 10.1029/2007JG000588.
  35. Haycock, N. E. & G. Pinay, 1993. Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during the winter. Journal of Environmental Quality 22: 273–278.CrossRefGoogle Scholar
  36. Hedin, L. O., J. C. von Fisher, N. E. Ostrom, B. P. Kennedy, M. G. Brown & G. P. Robertson, 1998. Thermodynamics constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces. Ecology 79: 684–703.Google Scholar
  37. Hoerling, M., J. Eischeid, J. Perlwitz, X. W. Quan, T. Zhang & P. Pegion, 2011. On the increased frequency of mediterranean drought. Journal of Climate 25: 2146–2161.CrossRefGoogle Scholar
  38. Humphries, P. & D. S. Baldwin, 2003. Drought and aquatic ecosystems: an introduction. Freshwater Biology 48: 1141–1146.CrossRefGoogle Scholar
  39. IPCC Climate Change, 2007. Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Pachaur, R. K. & A. Reisenger (eds), IPCC, Geneva, Switzerland: 104.Google Scholar
  40. Kemp, M. J. & W. K. Dodds, 2002. The influence of ammonium, nitrate, and dissolved oxygen concentrations on uptake, nitrification, and denitrification rates associated with prairie stream substrata. Limnology and Oceanography 47: 1380–1393.CrossRefGoogle Scholar
  41. Kleeberg, A. & M. Heidenreich, 2004. Release of nitrogen and phosphorus from macrophyte stands of summer dried out sediments of a eutrophic reservoir. Archiv für Hydrobiologie 159: 115–136.CrossRefGoogle Scholar
  42. Larned, S. T., T. Datry, D. B. Arscott & K. Tockner, 2010. Emerging concepts in temporary-river ecology. Freshwater Biology 55: 717–738.CrossRefGoogle Scholar
  43. Larson, J. H., P. C. Frost, D. M. Lodge & G. A. Lamberti, 2007. Photodegradation of dissolved organic matter in forested streams of the northern Great Lakes region. Journal of the North American Benthological Society 26: 416–425.CrossRefGoogle Scholar
  44. Latron, J., P. Llorens & F. Gallart, 2009. The hydrology of Mediterranean mountain areas. Geopgraphy Compass 3: 2045–2064.Google Scholar
  45. Lewis, W. M. Jr., J. M. Melack, W. H. McDowell, M. McClain & J. E. Richey, 1999. Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry 46: 149–162.Google Scholar
  46. Lillebo, A. I., M. Morais, P. Guilherme, R. Fonseca, A. Serafim & R. Neves, 2007. Nutrient dynamics in mediterranean temporary streams: a case study in Pardiela catchment (Degebe River, Portugal). Limnologica 37: 337–348.CrossRefGoogle Scholar
  47. Llasat, M. C., M. Llasat-Botija, A. Rodriguez & S. Lindbergh, 2010. Flash floods in Catalonia: a recurrent situation. Advances in Geosciences 26: 105–111.CrossRefGoogle Scholar
  48. Llorens, P., J. Latron, M. Alvarez-Cobelas, J. Martínez-Vilalta & G. Moreno, 2011. Hydrology and biogeochemistry of mediterranean forests. In Levia, D. F., D. Carlyle-Moses & T. Tanaka (eds), Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, Ecological Studies 216. Springer Verlag, Heidelberg: 301–319.CrossRefGoogle Scholar
  49. Martí, E. & F. Sabater, 1996. High variability in temporal and spatial nutrient retention in mediterranean streams. Ecology 77: 854–869.CrossRefGoogle Scholar
  50. Martí, E., J. Armengol & F. Sabater, 1994. Day and night nutrient uptake differences in a calcareous stream. Verhandlungen der Internationalen Vereinigung der Limnologie 25: 1756–1760.Google Scholar
  51. Martí, E., N. B. Grimm & S. G. Fisher, 1997. Pre- and post-flood retention efficiency of nitrogen in a Sonoran Desert stream. Journal of the North American Benthological Society 16: 805–819.CrossRefGoogle Scholar
  52. Martí, E., S. G. Fisher, J. D. Schade & N. B. Grimm, 2000. Flood frequency, arid land streams, and their riparian zones. In Jones, J. B. & P. J. Mulholland (eds), Streams and Ground Waters. Academic Press, San Diego, CA, USA: 111–136.CrossRefGoogle Scholar
  53. Marxsen, J., A. Zoppini & S. Wilczek, 2010. Microbial communities in streambed sediments recovering from desiccation. FEMS Microbiology Ecology 71: 374–386.PubMedCrossRefGoogle Scholar
  54. McIntyre, R. E. S., M. A. Adams & P. F. Grierson, 2009. Nitrogen mineralization potential in rewetted soils from a semi-arid stream landscape, north-west Australia. Journal of Arid Environments 73: 48–54.CrossRefGoogle Scholar
  55. McLaughlin, C., 2008. Evaporation as a nutrient retention mechanism at Sycamore Creek, Arizona. Hydrobiologia 603: 241–252.CrossRefGoogle Scholar
  56. Meixner, T. & M. Fenn, 2004. Biogeochemical budgets in a mediterranean catchment with high rates of atmospheric N deposition—importance of scale and temporal asynchrony. Biogeochemistry 70: 331–356.CrossRefGoogle Scholar
  57. Meixner, T., A. K. Huth, P. D. Brooks, M. H. Conklin, N. B. Grimm, R. C. Bales, P. A., Haas, & J. R. Petti, 2007. Influence of shifting paths on nitrogen concentrations during monsoon floods, San Pedro River, Arizona. Journal of Geophysical Research 112: G03S03. doi: 10.1029/2006JG000266.
  58. Meyer, J. L., J. B. Wallace & S. L. Eggert, 1998. Leaf litter as a source of dissolved organic carbon in streams. Ecosystems 1: 240–249.CrossRefGoogle Scholar
  59. Morrice, J. A., H. M. Valett, C. N. Dahm & M. E. Campana, 1997. Alluvial characteristics, groundwater-surface water exchange and hydrological retention in headwater streams. Hydrological Processes 11: 253–367.CrossRefGoogle Scholar
  60. Obermann, M., K. H. Rosenwinkel & M. G. Tournoud, 2009. Investigation of first flushes in a medium-sized mediterranean catchment. Journal of Hydrology 373: 405–415.CrossRefGoogle Scholar
  61. Peterjohn, W. T. & D. L. Correll, 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65: 1466–1475.CrossRefGoogle Scholar
  62. Peterson, B. J., W. M. Wollheim, P. J. Mulholland, J. R. Webster, J. L. Meyer, J. L. Tank, E. Martí, W. B. Bowden, H. M. Valett, A. E. Hershey, W. H. McDowell, W. K. Dodds, S. K. Hamilton, S. V. Gregory & D. D. Morral, 2001. Controls of nitrogen export from watersheds by headwater streams. Science 292: 86–90.PubMedCrossRefGoogle Scholar
  63. Rey, A., E. Pegoraro, V. Tedeschi, I. de Parri, P. G. Jarvis & R. Valentini, 2002. Annual variation in soil respiration and its components in a coppice oak forest in central Italy. Global Change Biology 8: 851–866.CrossRefGoogle Scholar
  64. Sabater, F. & S. Bernal, 2011. Keeping healthy riparian and aquatic ecosystems in the mediterranean: challenges and solutions through riparian forest management. In Birot, Y., C. Gracia & M. Palahí (eds), Water for Forests and People in the mediterranean Region – a Challenging Balance. What Science can Tell us. European Forest Institute, Finland: 151–155.Google Scholar
  65. Sabater, S., A. Butturini, J. C. Clement, T. Burt, D. Dowrick, M. Hefting, V. Matre, G. Pinay, C. Postolache & M. Rzepecki, 2003. Nitrogen removal by riparian buffers along a European climatic gradient: patterns and factors of variation. Ecosystems 6: 20–30.CrossRefGoogle Scholar
  66. Shade, J. D., E. Martí, J. R. Welter, S. G. Fisher & N. B. Grimm, 2002. Sources of nitrogen to the riparian zone of a desert stream: implications for riparian vegetation and nitrogen retention. Ecosystems 5: 68–79.CrossRefGoogle Scholar
  67. Shade, J. D., J. R. Welter, E. Martí & N. B. Grimm, 2005. Hydrologic exchange and N uptake by riparian vegetation in and arid-land stream. Journal of the North American Benthological Society 24: 19–28.CrossRefGoogle Scholar
  68. Sigman, D. M., M. A. Altabet, R. Michener, D. C. McCorkle, B. Fry & R. M. Holmes, 1997. Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Marine Chemistry 57: 227–242.CrossRefGoogle Scholar
  69. Simon, K. S., C. R. Townsend, B. J. F. Biggs & W. B. Bowden, 2005. Temporal variation of N and P uptake in 2 New Zealand streams. Journal of the North American Benthological Society 24: 1–18.CrossRefGoogle Scholar
  70. Skoulikidis, N. & Y. Amaxidis, 2009. Origin and dynamics of dissolved and particulate nutrients in a minimally disturbed mediterranean river with intermittent flow. Journal of Hydrology 373: 218–229.CrossRefGoogle Scholar
  71. Stanley, E. H., S. G. Fisher & N. B. Grimm, 1997. Ecosystem expansion and contraction in streams. BioScience 47: 427–435.CrossRefGoogle Scholar
  72. Steward, A. L., D. von Schiller, K. Tockner, J. C. Marshall & S. E. Bunn, 2012. When the river runs dry: human and ecological values of dry riverbeds. Frontiers in Ecology and the Environment 10: 202–209.CrossRefGoogle Scholar
  73. Strahler, A. N. & A. H. Strahler, 1989. Geografía física. Omega, Barcelona, Spain: 636.Google Scholar
  74. Tank, J. L., E. J. Rosi-Marshall, M. A. Baker & R. O. Hall Jr., 2008. Are rivers just big streams? A pulse method to quantify nitrogen demand in a large river. Ecology 89: 2935–2945.PubMedCrossRefGoogle Scholar
  75. Timoner, X., V. Acuña, D. von Schiller & S. Sabater, 2012. Functional responses of stream biofilms to flow cessation, desiccation and rewetting. Freshwater Biology 57: 1565–1578.CrossRefGoogle Scholar
  76. Tzoraki, O., N. P. Nikolaidis, Y. Amaxidis & N. T. Skoulikidis, 2007. Instream biogeochemical processes of a temporary river. Environmental Science and Technology 41: 1225–1231.PubMedCrossRefGoogle Scholar
  77. Valett, H. M., J. A. Morrice, C. N. Dahm & M. E. Campana, 1996. Parent lithology, surface-groundwater exchange, and nitrate retention in headwater streams. Limnology and Oceanography 41: 333–345.CrossRefGoogle Scholar
  78. Valett, H. M., C. N. Dahm, M. E. Campana, J. A. Morrice, M. A. Baker & C. S. Fellow, 1997. Hydrologic influences on groundwater-surface water ecotones: heterogeneity in nutrient composition and retention. Journal of the North American Benthological Society 16: 239–247.CrossRefGoogle Scholar
  79. Vázquez, E., A. M. Romaní, F. Sabater & A. Butturini, 2007. Effects of the dry–wet hydrological shift on dissolved organic carbon dynamics and fate across stream–riparian interface in a mediterranean catchment. Ecosystems 10: 239–251.CrossRefGoogle Scholar
  80. von Schiller, D., E. Martí, J. L. Riera, M. Ribot, A. Argerich, P. Fonollà & F. Sabater, 2008. Inter-annual, annual, and seasonal variation of P and N retention in a perennial and an intermittent stream. Ecosystems 11: 670–687.CrossRefGoogle Scholar
  81. von Schiller, D., V. Acuña, D. Graeber, E. Martí, M. Ribot, S. Sabater, X. Timoner & K. Tockner, 2011. Contraction, fragmentation and expansion dynamics determine nutrient availability in a mediterranean forest stream. Aquatic Sciences 73: 485–497.CrossRefGoogle Scholar
  82. Webster, J. R. & H. M. Valett, 2006. Solute dynamics. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, San Diego: 169–185.Google Scholar
  83. Welter, J. R., S. G. Fisher & N. B. Grimm, 2005. Nitrogen transport and retention in an arid land watershed: influence of storm characteristics on terrestrial-aquatic linkages. Biogeochemistry 76: 421–440.CrossRefGoogle Scholar
  84. Ylla, I., I. Sanpera-Calbet, E. Vázquez, A. M. Romaní, I. Muñoz, A. Butturini & S. Sabater, 2010. Organic matter availability during pre- and post-drought periods in a mediterranean stream. Hydrobiologia 657: 217–232.CrossRefGoogle Scholar
  85. Zoppini, A. & J. Marxen, 2011. Importance of extracellular enzymes for biogeochemical processes in temporary river sediments during fluctuating dry–wet conditions. In Shukla, G. & A. Varma (eds), Soil Enzymology. Soil Biology 22. Springer-Verlag, Berlin: 103–118.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Susana Bernal
    • 1
  • Daniel von Schiller
    • 2
  • Francesc Sabater
    • 3
  • Eugènia Martí
    • 1
  1. 1.Center for Advanced Studies of Blanes (CEAB-CSIC)BlanesSpain
  2. 2.Catalan Institute for Water Research (ICRA)GironaSpain
  3. 3.Department of Ecology, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations