Advertisement

Hydrobiologia

, Volume 700, Issue 1, pp 287–300 | Cite as

Change in a lake benthic community over a century: evidence for alternative community states

  • Alexander Y. KaratayevEmail author
  • Lyubov E. Burlakova
  • M. Jake Vander Zanden
  • Richard C. Lathrop
  • Dianna K. Padilla
Primary Research Paper

Abstract

Aquatic communities are one of the most studied systems where alternative states or regime shifts have been detected. We used data spanning a century of time to test whether the zoobenthic community of Lake Mendota, Wisconsin, USA, was relatively stable through time, variable, or whether there was any evidence of alternative community states. We used multivariate statistical analyses to test for community structure similarity and whether detected differences corresponded to major changes in the local environment. Surprisingly, the benthic community in Lake Mendota was not statistically different from the mid 1960s to the present. Similarly, the benthic community was not significantly different from 1914 to the 1950s. However, between the 1950s and mid 1960s there was a dramatic change in the zoobenthic community, including the loss of key taxa and a decrease in the diversity of several major taxa. This dramatic change cannot be attributed to any single environmental factor, and is correlated with multiple factors acting simultaneously, including increased urban development, human population density, intensive agriculture, and the introduction of a major invasive species, Eurasian watermilfoil. The long-term similarity in the benthic community before and after the shift suggests two alternative states that switched with the confluence of multiple stressors.

Keywords

Zoobenthos Long-term change Community analysis Multiple community states Lake Mendota 

Notes

Acknowledgments

We thank the staff and the Director of the Center for Limnology, James Kitchell, for providing space for AYK and LEB, and lab and field support for this project, and Karen Wilson, Dmitry and Vadim Karatayev, Irina Geramovna Parsamova, Dave Harring, Willie Fetzer, Stephanie Schmidt, and Tyler R. McCombs for assistance with sampling and sample processing, and F. James Rohlf for discussions on our statistical analyses. We thank Karen O’Quin, Associate Dean and the Women in Science and Mathematics Series at Buffalo State College, which provided support for DKP during the writing of this paper. This project was funded by Grant Number 45613 from the Wisconsin Division of Natural Resources.

Supplementary material

10750_2012_1238_MOESM1_ESM.doc (267 kb)
Supplementary material 1 (DOC 267 kb)

References

  1. Birge, E. A. & C. Juday, 1911. The inland lakes of Wisconsin. The dissolved gases of the water and their biological significance. Wisconsin Geological and Natural History Survey Bulletin 22: 81–84.Google Scholar
  2. Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities in southern Wisconsin. Ecological Monographs 27: 325–349.CrossRefGoogle Scholar
  3. Brinkhurst, R. O., 1974. The Benthos of Lakes. St. Martin’s Press, Inc., New York.Google Scholar
  4. Brock, T. D., 1985. A eutrophic lake: Lake Mendota, Wisconsin. Springer, New York.CrossRefGoogle Scholar
  5. Brown, L. E., A. M. Milner & D. M. Hannah, 2006. Stability and persistence of alpine stream macroinvertebrate communities and the role of physicochemical habitat variables. Hydrobiologia 60: 159–173.CrossRefGoogle Scholar
  6. Buchan, L. A. J. & D. K. Padilla, 1999. Estimating the probability of long-distance overland dispersal of invading aquatic species. Ecological Applications 9: 254–265.CrossRefGoogle Scholar
  7. Carpenter, S. R., R. DeFries, T. Dietz, H. A. Mooney, S. Polasky, W. V. Reid & R. J. Scholes, 2006a. Millennium ecosystem assessment: research needs. Science 314: 257–258.PubMedCrossRefGoogle Scholar
  8. Carpenter, S. R., R. C. Lathrop, P. Nowak, E. M. Bennett, T. Reed & P. A. Soranno, 2006b. The ongoing experiment: restoration of Lake Mendota and its watershed. In Magnuson, J. J., T. K. Kratz & B. J. Benson (eds), Long-term dynamics of lakes in the landscape. Oxford University Press, New York: 236–256.Google Scholar
  9. Carpenter, S. R., B. J. Benson, R. Biggs, J. W. Chipman, J. A. Foley, S. A. Golding, R. B. Hammer, P. C. Hanson, P. T. J. Johnson, A. M. Kamarainen, T. K. Kratz, R. C. Lathrop, K. D. McMahon, B. Provencher, J. A. Rusak, C. T. Solomon, E. H. Stanley, M. G. Turner, M. J. Vander Zanden, C.-H. Wu & H. Yuan, 2007. Understanding regional change: comparison of two lake districts. BioScience 57: 323–335.CrossRefGoogle Scholar
  10. Carpenter, S. R., H. A. Mooney, J. Agard, D. Capistrano, R. S. DeFries, S. Diaz, T. Dietz, A. K. Duraiappah, A. Oteng-Yeboah, H. M. Pereira, C. Perrings, W. V. Reid, J. Sarukhan, R. J. Scholes & A. Whyte, 2009. Science for managing ecosystem services: beyond the millennium ecosystem assessment. Proceedings of the National Academy of Sciences 106: 1305–1312.CrossRefGoogle Scholar
  11. Chapin III, F. S., B. H. Walker, R. J. Hobbs, D. U. Hooper, J. H. Lawton, O. E. Sala & D. Tilman, 1997. Biotic control over the functioning of ecosystem. Science 277: 500–504.CrossRefGoogle Scholar
  12. Chapin III, F. S., E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavorel, O. E. Sala, S. H. Hobbie, M. C. Mack & S. Diaz, 2000. Consequences of changing biodiversity. Nature 405: 234–242.PubMedCrossRefGoogle Scholar
  13. Clarke, K. R., 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  14. Clarke, K. R. & R. H. Green, 1988. Statistical design and analysis for a “biological effects” study. Marine Ecology Progress Series 46: 213–226.CrossRefGoogle Scholar
  15. Clarke, K. R. & M. Ainsworth, 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92: 205–219.CrossRefGoogle Scholar
  16. Clarke, K. R. & R. M. Warwick, 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. Primer-E Ltd., Plymouth, UK.Google Scholar
  17. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User manual/tutorial. PRIMER-E, Plymouth, UK.Google Scholar
  18. Connell, J. H. & W. P. Sousa, 1983. On the evidence needed to judge ecological stability or persistence. The American Naturalist 121: 789–824.CrossRefGoogle Scholar
  19. Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems. BioScience 49: 119–127.CrossRefGoogle Scholar
  20. Eiswerth, M. E., S. G. Donaldson & W. S. Johnson, 2000. Potential environmental impacts and economic damages of Eurasian watermilfoil (Myriophyllum spicatum) in western Nevada and northeastern California. Weed Technology 14: 511–518.CrossRefGoogle Scholar
  21. Gunderson, L. H., 2000. Ecological resilience—in theory and application. Annual Review of Ecology and Systematics 31: 425–439.CrossRefGoogle Scholar
  22. Hasler, A. D., 1945. Observations on the winter perch population of the Lake Mendota. Ecology 26: 90–94.CrossRefGoogle Scholar
  23. Hämäläinen, H., H. Luotonen, E. Koskenniemi & P. Liljaniemi, 2003. Inter-annual variation in macroinvertebrate communities in a shallow forest lake in eastern Finland during 1990–2001. Hydrobiologia 506–509: 389–397.CrossRefGoogle Scholar
  24. Hilsenhoff, W. L., 1987. An improved biotic index of organic stream pollution. The Great Lakes Entomologist 20: 31–39.Google Scholar
  25. Holling, C. S., 1986. The resilience of terrestrial ecosystems; local surprise and global change. In Clark, W. C. & R. E. Munn (eds), Sustainable Development of the Biosphere. Cambridge University Press, Cambridge, UK: 292–317.Google Scholar
  26. Holopainen, I. J. & P. M. Jónasson, 1983. Long-term population dynamics and production of Pisidium (Bivalvia) in the profundal of Lake Erie, Denmark. Oikos 41: 99–117.CrossRefGoogle Scholar
  27. Hutchinson, G. E., 1993. A Treatise on Limnology. IV. The Zoobenthos. Wiley, New York.Google Scholar
  28. Juday, C., 1921. Quantitative studies of the bottom fauna in the deeper waters of Lake Mendota. Wisconsin Academy of Sciences, Arts and Letters 20: 461–493.Google Scholar
  29. Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 1997. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. Journal of Shellfish Research 16: 187–203.Google Scholar
  30. Kenkel, N. C. & L. Orloci, 1986. Applying metric and nonmetric multidimensional scaling to some ecological studies: some new results. Ecology 67: 919–928.CrossRefGoogle Scholar
  31. Lathrop, R. C., 1992a. Decline in zoobenthos densities in the profundal sediments of Lake Mendota (Wisconsin, USA). Hydrobiologia 235(236): 353–361.CrossRefGoogle Scholar
  32. Lathrop, R. C., 1992b. Benthic macroinvertebrates. In Kitchell, J. F. (ed.), Food web management: a case study of Lake Mendota. Springer, New York: 173–192.Google Scholar
  33. Lathrop, R. C., 2007. Perspective on the eutrophication of the Yahara lakes. Lake and Reservoir Management 23: 345–365.CrossRefGoogle Scholar
  34. Lathrop, R. C. & S. R. Carpenter, 1992. Zooplankton and their relationship to phytoplankton. In Kitchell, J. F. (ed.), Food web management: a case study of Lake Mendota. Springer, New York: 129–152.Google Scholar
  35. Lathrop, R. C., S. B. Nehls, C. L. Brynildson & K. R. Plass, 1992. The fishery of the Yahara lakes. Wisconsin Department of Natural Resources. Technical Bulletin 181, Madison.Google Scholar
  36. Lathrop, R. C., S. B. Carpenter & L. G. Rudstam, 1996. Water clarity in Lake Mendota since 1900: responses to differing levels of nutrients and herbivory. Canadian Journal of Fishery and Aquatic Sciences 53: 2250–2261.CrossRefGoogle Scholar
  37. Mackenthum, K. M. & H. L. Cooley, 1952. The biological effect of copper sulphate treatment on lake ecology. Transactions of the Wisconsin Academy of Sciences, Arts, and Letters 41: 177–187.Google Scholar
  38. Magnuson, J. J., 1990. Long-term ecological research and the invisible present. BioScience 40: 495–501.CrossRefGoogle Scholar
  39. Magnuson, J. J. & R. C. Lathrop, 1992. Historical changes in the fish community. In Kitchell, J. F. (ed.), Food web management: a case study of Lake Mendota. Springer, New York: 193–232.Google Scholar
  40. Mandaville, S. M., 2002. Benthic macroinvertebrates in freshwaters—taxa tolerance values, metrics, and protocols. Project H-1, Soil and Water Conservation Society of Metro Halifax, xviii, Appendices A–B, Nova Scotia.Google Scholar
  41. Metzeling, L., D. Robinson, S. Perriss & R. Marchant, 2002. Temporal persistence of benthic invertebrate communities in south-eastern Australian streams: taxonomic resolution and implications for the use of predictive models. Marine & Freshwater Research 53: 1223–1234.CrossRefGoogle Scholar
  42. Mills, E. L., J. H. Leach, J. T. Carlton & C. L. Secor, 1993. Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions. Journal of Great Lakes Research 19: 1–54.CrossRefGoogle Scholar
  43. Muttkowski, R. A., 1918. The fauna of Lake Mendota: a qualitative and quantitative survey with special reference to the insects. Transactions of the Wisconsin Academy of Sciences, Arts, and Letters 19: 374–482.Google Scholar
  44. Nichols, S. A. & R. C. Lathrop, 1994. Cultural impacts on macrophytes in the Yahara lakes since the late 1800s. Aquatic Botany 47: 225–247.CrossRefGoogle Scholar
  45. Paine, R. T., M. J. Tegner & B. A. Johnson, 1998. Compounded perturbations yield ecological surprises. Ecosystems 1: 535–545.CrossRefGoogle Scholar
  46. Palumbi, S. R., K. L. McLeod & D. Grunbaum, 2008. Ecosystems in action: lessons from marine ecology about recovery, resistance, and reversibility. BioScience 58: 33–42.CrossRefGoogle Scholar
  47. Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross & R. M. Hughes, 1989. Rapid bioassessment protocols for use in streams and rivers. Benthic macroinvertebrates and fish. EPA/444/4-89/001. Office of Water Regulations and Standards, U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  48. Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walkerk, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.PubMedCrossRefGoogle Scholar
  49. Scheffer, M., J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk & G. Sugihara, 2009. Early-warning signals for critical transitions. Nature 461: 53–59.PubMedCrossRefGoogle Scholar
  50. Vander Zanden, M. J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.CrossRefGoogle Scholar
  51. Vadeboncoeur, Y. M., M. J. Vander Zanden & D. M. Lodge, 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. BioScience 52: 44–54.CrossRefGoogle Scholar
  52. Vadeboncoeur, Y., G. D. Peterson, M. J. Vander Zanden & J. Kalff, 2008. Benthic algal contributions to primary production across lake size gradients: interactions among morphometry, nutrients and light. Ecology 89: 2542–2552.PubMedCrossRefGoogle Scholar
  53. Warton, D. I., S. T. Wright & Y. Wang, 2012. Distance based multivariate analysis confound location and dispersion effects. Methods in Ecology and Evolution 3: 89–101.CrossRefGoogle Scholar
  54. Warwick, R. M. & K. R. Clarke, 1993. Increased variability as a symptom of stress in marine communities. Journal of Experimental Marine Biology and Ecology 172: 215–226.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Alexander Y. Karatayev
    • 1
    Email author
  • Lyubov E. Burlakova
    • 1
    • 2
  • M. Jake Vander Zanden
    • 3
  • Richard C. Lathrop
    • 3
    • 4
  • Dianna K. Padilla
    • 5
  1. 1.Great Lakes CenterBuffalo State CollegeBuffaloUSA
  2. 2.The Research Foundation of The State University of New YorkBuffalo State College, Office of Sponsored ProgramsBuffaloUSA
  3. 3.Center for LimnologyUniversity of Wisconsin—MadisonMadisonUSA
  4. 4.Wisconsin Department of Natural ResourcesMadisonUSA
  5. 5.Department of Ecology and EvolutionStony Brook UniversityStony BrookUSA

Personalised recommendations