, Volume 700, Issue 1, pp 23–32 | Cite as

Global climate change will severely decrease potential distribution of the East Asian coldwater fish Rhynchocypris oxycephalus (Actinopterygii, Cyprinidae)

  • Dan Yu
  • Ming Chen
  • Zhuocheng Zhou
  • Rochard Eric
  • Qiongying Tang
  • Huanzhang Liu
Primary Research Paper


Global climate change has been suggested to cause decrease of distribution area of many species. However, this has not been tested for East Asian inland coldwater fish. Chinese minnow (Rhynchocypris oxycephalus) is a small typical coldwater fish, which is endemic to East Asia and generally inhabits stream headwaters. Due to its occurrence in temperate south China, there is growing concern about its future fate in the face of global warming. In this study, we employed maximum entropy approach to analyze how distribution of this species would be impacted by future climate change. We collected data of 310 independent distribution points and 20 environmental variables, and conducted modeling under three general circulation models assuming two gas emission scenarios for 2020s, 2050s, and 2080s. The results showed that the Min temperature of coldest month was the most important climatic variable for potential distribution of the Chinese minnow. Modeling predicted geographical distribution of the Chinese minnow would shrink over time and become much more limited in all the situations especially in South-eastern China, and there would be little suitable habitat left in this region by 2080s. Our results confirm that climate change clearly poses a severe threat to the Chinese minnow, and we suggest that conservation efforts should focus on lower temperature areas within the current range, because these areas will remain relatively cool and may be still suitable for the Chinese minnow even under the most drastic climate change scenarios.


Climate change Geographical distribution Maxent Range contraction 



Many thanks to researchers who provided locality records, particularly Shaorong Yang, Pengcheng Lin and Chuanjiang Zhou. Thanks are also to Rao Cui for invaluable assistance in the technical treatment of map analyses. This research was supported by the Innovation Projects of the Chinese Academy of Sciences (KSCXZ-YW-Z1023). Two reviewers are thanked for their useful suggestions and comments that helped improve the manuscript.

Supplementary material

10750_2012_1213_MOESM1_ESM.pdf (326 kb)
Supplementary material 1 (PDF 327 kb)


  1. Anciaes, M. & A. T. Peterson, 2006. Climate change effects on neotropical manakin diversity based on ecological niche modeling. Condor 108: 778–791.CrossRefGoogle Scholar
  2. Aranda, S. C. & J. M. Lobo, 2011. How well does presence-only-based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora. Ecography 34: 31–38.CrossRefGoogle Scholar
  3. Baxter, G. T. & M. D. Stone, 1995. Fishes of Wyoming. Wyoming Game and Fish Department, Cheyenne.Google Scholar
  4. Bogutskaya, N. G., A. M. Naseka, S. V. Shedko, E. D. Vasil’eva & I. A. Chereshnev, 2008. The fishes of the Amur River: updated check-list and zoogeography. Ichthyological Exploration of Freshwaters 19: 301–366.Google Scholar
  5. Broennimann, O., U. A. Treier, H. Muller-Scharer, W. Thuiller, A. T. Peterson & A. Guisan, 2007. Evidence of climatic niche shift during biological invasion. Ecology Letters 10: 701–709.PubMedCrossRefGoogle Scholar
  6. Buisson, L., L. Blanc & G. Grenouillet, 2008a. Modelling stream fish species distribution in a river network: the relative effects of temperature versus physical factors. Ecology of Freshwater Fish 17: 244–257.CrossRefGoogle Scholar
  7. Buisson, L., W. Thuiller, S. Lek, P. Lim & G. Grenouillet, 2008b. Climate change hastens the turnover of stream fish assemblages. Global Change Biology 14: 2232–2248.CrossRefGoogle Scholar
  8. Chapin, F. S., E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavorel, O. E. Sala, S. E. Hobbie, M. C. Mack & S. Diaz, 2000. Consequences of changing biodiversity. Nature 405: 234–242.PubMedCrossRefGoogle Scholar
  9. Chen, Y. Y. (ed.), 1998. Fauna Sinica. Osteichthyes. Cypriniformes II. Sciences Press, Beijing.Google Scholar
  10. Chu, C., N. E. Mandrak & C. K. Minns, 2005. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Diversity and Distributions 11: 299–310.CrossRefGoogle Scholar
  11. Collins, M., S. F. B. Tett & C. Cooper, 2001. The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 17: 61–81.CrossRefGoogle Scholar
  12. Davis, A. J., L. S. Jenkinson, J. H. Lawton, B. Shorrocks & S. Wood, 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature 391: 783–786.PubMedCrossRefGoogle Scholar
  13. Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Williams, M. S. Wisz & N. E. Zimmermann, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.CrossRefGoogle Scholar
  14. Fielding, A. H. & J. F. Bell, 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38–49.CrossRefGoogle Scholar
  15. Fischer, J. M., M. H. Olson, C. E. Williamson, J. C. Everhart, P. J. Hogan, J. A. Mack, K. C. Rose, J. E. Saros, J. R. Stone & R. D. Vinebrooke, 2011. Implications of climate change for Daphnia in alpine lakes: predictions from long-term dynamics, spatial distribution, and a short-term experiment. Hydrobiologia 676: 263–277.CrossRefGoogle Scholar
  16. Fitzpatrick, M. C., A. D. Gove, N. J. Sanders & R. R. Dunn, 2008. Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Global Change Biology 14: 1337–1352.CrossRefGoogle Scholar
  17. Gibson, L., A. McNeill, P. de Tores, A. Wayne & C. Yates, 2010. Will future climate change threaten a range restricted endemic species, the quokka (Setonix brachyurus), in south west Australia? Biological Conservation 143: 2453–2461.CrossRefGoogle Scholar
  18. Gordon, H. B. & S. P. Farrell, 1997. Transient climate change in the CSIRO coupled model with dynamic sea ice. Monthly Weather Review 125: 875–908.CrossRefGoogle Scholar
  19. Grant, E. H. C., W. H. Lowe & W. F. Fagan, 2007. Living in the branches: population dynamics and ecological processes in dendritic networks. Ecology Letters 10: 165–175.CrossRefGoogle Scholar
  20. Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.CrossRefGoogle Scholar
  21. Hijmans, R. J., L. Guarino, C. Bussink & P. Mathur, 2012. DIVA-GIS. Version. 7.3. http://www.diva-gis.norg.
  22. Hirzel, A. H., J. Hausser, & N. Perrin, 2004. Biomapper Version 3.1. Laboratory of Conservation Biology, Department of Ecology and Evolution, University of Lausanne. http://www.unil.ch/biomapper.
  23. Hu, J. H. & Z. G. Jiang, 2011. Climate change hastens the conservation urgency of an endangered ungulate. Plos One 6: e22873.PubMedCrossRefGoogle Scholar
  24. Hutchinson, M. F., 1995. Interpolating mean rainfall using thin plate smoothing splines. International Journal of Geographic Information Systems 9: 385–403.CrossRefGoogle Scholar
  25. Jackson, D. A. & N. E. Mandrak, 2002. Changing fish biodiversity: Predicting the loss of cyprinid biodiversity due to global climate change. In McGinn, N. A. (ed) Fisheries in a Changing Climate. American Fisheries Society Symposium, Vol. 32: 89–98.Google Scholar
  26. Jang, M. H., J. G. Kim, S. B. Park, K. S. Jeong, G. I. Cho & G. J. Joo, 2002. The current status of the distribution of introduced fish in large river systems of South Korea. International Review of Hydrobiology 87: 319–328.CrossRefGoogle Scholar
  27. Kearney, M. & W. Porter, 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12: 334–350.PubMedCrossRefGoogle Scholar
  28. Keith, D. A., H. R. Akcakaya, W. Thuiller, G. F. Midgley, R. G. Pearson, S. J. Phillips, H. M. Regan, M. B. Araujo & T. G. Rebelo, 2008. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biology Letters 4: 560–563.PubMedCrossRefGoogle Scholar
  29. Kim, S. J., G. M. Flato & G. J. Boer, 2003. A coupled climate model simulation of the last glacial maximum, part 2: approach to equilibrium. Climate Dynamics 20: 635–661.Google Scholar
  30. Liu, C. R., P. M. Berry, T. P. Dawson & R. G. Pearson, 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385–393.CrossRefGoogle Scholar
  31. Macarthur, R. H., 1972. Geographical Ecology. Princeton University Press, Princeton, NJ.Google Scholar
  32. Magnuson, J., 2001. 150-Year global ice record reveals major warming trend. Inter-American Institute for Global Change Research 24: 22–25.Google Scholar
  33. Marmion, M., M. Parviainen, M. Luoto, R. K. Heikkinen & W. Thuiller, 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15: 59–69.CrossRefGoogle Scholar
  34. McLaughlin, J. F., J. J. Hellmann, C. L. Boggs & P. R. Ehrlich, 2002. Climate change hastens population extinctions. Proceedings of the National Academy of Sciences of the United States of America 99: 6070–6074.PubMedCrossRefGoogle Scholar
  35. Minns, C. K. & J. E. Moore, 1995. Factors limiting the distributions of Ontario’s freshwater fishes: the role of climate and other variables, and the potential impacts of climate change. Canadian Special Publication of Fisheries and Aquatic Sciences 121: 137–160.Google Scholar
  36. Mohseni, O., H. G. Stefan & J. G. Eaton, 2003. Global warming and potential changes in fish habitat in US streams. Climatic Change 59: 389–409.CrossRefGoogle Scholar
  37. Parmesan, C., 1996. Climate and species’ range. Nature 382: 765–766.CrossRefGoogle Scholar
  38. Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.PubMedCrossRefGoogle Scholar
  39. Parmesan, C., N. Ryrholm, C. Stefanescu, J. K. Hill, C. D. Thomas, H. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas & M. Warren, 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399: 579–583.CrossRefGoogle Scholar
  40. Peterson, A. T., J. Soberon & V. Sanchez-Cordero, 1999. Conservatism of ecological niches in evolutionary time. Science 285: 1265–1267.PubMedCrossRefGoogle Scholar
  41. Peterson, A. T., V. Sanchez-Cordero, J. Soberon, J. Bartley, R. W. Buddemeier & A. G. Navarro-Siguenza, 2001. Effects of global climate change on geographic distributions of Mexican Cracidae. Ecological Modelling 144: 21–30.CrossRefGoogle Scholar
  42. Peterson, A. T., M. A. Ortega-Huerta, J. Bartley, V. Sanchez-Cordero, J. Soberon, R. H. Buddemeier & D. R. B. Stockwell, 2002. Future projections for Mexican faunas under global climate change scenarios. Nature 416: 626–629.PubMedCrossRefGoogle Scholar
  43. Peterson, A. T., E. Martinez-Meyer, C. Gonzalez-Salazar & P. W. Hall, 2004. Modeled climate change effects on distributions of Canadian butterfly species. Canadian Journal of Zoology-Revue Canadienne De Zoologie 82: 851–858.CrossRefGoogle Scholar
  44. Phillips, S. J., M. Dudik & R. E. Schapire, 2004. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, Alberta, Canada, July 4–8.Google Scholar
  45. Phillips, S. J. & M. Dudik, 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161–175.CrossRefGoogle Scholar
  46. Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259.CrossRefGoogle Scholar
  47. Rahel, F. J., 2002. Using current biogeographic limits to predict fish distributions following climate change. American Fisheries Society Symposium 32: 99–110.Google Scholar
  48. Ramirez, J. & Jarvis, A., 2008. High Resolution Statistically Downscaled Future Climate Surfaces. http://gisweb.ciat.cgiar.org (accessed July 2011).
  49. Roura-Pascual, N., A. V. Suarez, C. Gomez, P. Pons, Y. Touyama, A. L. Wild & A. T. Peterson, 2004. Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proceedings of the Royal Society of London Series B-Biological Sciences 271: 2527–2534.CrossRefGoogle Scholar
  50. Sharma, S., D. A. Jackson, C. K. Minns & B. J. Shuter, 2007. Will northern fish populations be in hot water because of climate change? Global Change Biology 13: 2052–2064.CrossRefGoogle Scholar
  51. Swets, J. A., 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293.PubMedCrossRefGoogle Scholar
  52. Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips & S. E. Williams, 2004. Extinction risk from climate change. Nature 427: 145–148.PubMedCrossRefGoogle Scholar
  53. Thuiller, W., 2004. Patterns and uncertainties of species’ range shifts under climate change. Global Change Biology 10: 2020–2027.CrossRefGoogle Scholar
  54. Visser, M. E., A. J. van Noordwijk, J. M. Tinbergen & C. M. Lessells, 1998. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proceedings of the Royal Society of London Series B-Biological Sciences 265: 1867–1870.CrossRefGoogle Scholar
  55. Williams, S. E., L. P. Shoo, J. L. Isaac, A. A. Hoffmann & G. Langham, 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. Plos Biology 6: 2621–2622.PubMedCrossRefGoogle Scholar
  56. Xiong, B. X., 1984. Preliminary study on reproductive biology of Phoxinus lagowskii varicgatus in Shennongjia. Reservoir Fisheries 2: 35–39.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dan Yu
    • 1
    • 2
  • Ming Chen
    • 1
    • 2
  • Zhuocheng Zhou
    • 3
  • Rochard Eric
    • 4
  • Qiongying Tang
    • 1
  • Huanzhang Liu
    • 1
  1. 1.Key Lab of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology Chinese Academy of SciencesWuhanChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.College of Animal ScienceZhejiang UniversityHangzhouPeople’s Republic of China
  4. 4.Cemagref Bordeaux, Estuarine Ecosystems and Diadromous Fish Research UnitCestas CedexFrance

Personalised recommendations