Hydrobiologia

, Volume 695, Issue 1, pp 17–24 | Cite as

Ultrastructure and function of stalks of the diatom Didymosphenia geminata

  • Marina Aboal
  • Sergio Marco
  • Elena Chaves
  • Iván Mulero
  • Alfonsa García-Ayala
ALGAE FOR MONITORING RIVERS

Abstract

One of the most striking features of the diatom Didymosphenia geminata, which has increased markedly in abundance in a number of countries in recent years, is the very large branched stalks. In order to help understanding their role, an ultrastructural study was carried out on two populations, one from a stream in northern England and the other from a river on Vancouver Island, Canada. In both cases, the main part of the stalk had a central reticulate core surrounded by an outer region with dense fibres. A longitudinal structure in the uppermost part of the stalk just under the collar surrounding the base of the cell may perhaps correspond to a tube. The structure of the septa formed where branches divide is also described. Phosphomonoesterase activity known to be present in the stalks was shown to occur in the inner peripheral layers of the stalks and especially in the collar area. The results show that stalks have a complex structure suggesting their importance for their phosphatase activity to overcome low inorganic phosphate concentrations. Their large surface may function in herbivory avoidance, a better exposure of cells to turbulent conditions to increase nutrient uptake, adsorption of limiting elements and gas exchange.

Keywords

Didymosphenia geminata Ecology Monitoring Phosphomonoesterase activity Stalks Ultrastructure 

Notes

Acknowledgments

We are indebted to Prof. M. Bothwell (National Water Research Institute, Vancouver Island) for sending material from Canada and Prof. B.A. Whitton (University of Durham) for sending the UK material and several comments on the manuscript. Grants CGL2006-09864 and CERT07-10321 from Spanish Ministry of Education and Science and Séneca Foundation from Murcia Autonomous Community partially financed the study.

References

  1. Bahulikar, R. A. & P. G. Kroth, 2007. Localization of EPS components secreted by freshwater diatoms using differential staining with fluorophore-conjugated lectins and other fluorochromes. European Journal of Phycology 42: 199–208.CrossRefGoogle Scholar
  2. Blanco, S. & L. Ector, 2009. Distribution, ecology and nuisance effects of the freshwater invasive diatom Didymosphenia geminata (Lyngbye) M. Schmidt: a literature review. Nova Hedwigia 88: 347–422.CrossRefGoogle Scholar
  3. Chiovitti, A., M. J. Higgins, R. E. Harper, R. Wetherbee & A. Bacic, 2003. The complex polysaccharides of the raphid diatom Pinnularia viridis (Bacillariophyceae). Journal of Phycology 39: 543–554.CrossRefGoogle Scholar
  4. Daniel, G. F., A. H. L. Chamberlain & E. B. G. Jones, 1987. Cytocheminal and electron microscopical observations on the adhesive materials of marine fouling diatoms. British Phycological Journal 22: 101–118.CrossRefGoogle Scholar
  5. Drum, R. W., 1964. Ecology of diatoms in the Des Moines River. PhD Thesis. Iowa State University of Science and Technology, Ames, Iowa.Google Scholar
  6. Ellwood, N. T. W. & B. A. Whitton, 2007. Importance of organic phosphate hydrolyzed in stalks of the lotic diatom Didymosphenia geminata and the possible impact of atmospheric and climatic change. Hydrobiologia 592: 121–133.CrossRefGoogle Scholar
  7. Ellwood, N. T. W., S. M. Haile & B. A. Whitton, 2008. Aquatic plant nutrients, moss phosphatase activities and tissue composition in four upland streams in northern England. Journal of Hydrology 350: 246–260.CrossRefGoogle Scholar
  8. Gomori, G., 1952. Microscopic Histochemistry. Principles and Practice. The University of Chicago Press, Chicago.Google Scholar
  9. Granum, E., S. Kirkvold & S. M. Myklestad, 2002. Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Marine Ecology Progress Series 242: 83–94.CrossRefGoogle Scholar
  10. Gretz, M. R., 2008. The stalks of didymo. In Bothwell, M. L. & S. A. Spaulding (eds), Proceedings of the 2007 International Workshop on Didymosphenia geminata. Canadian Technical Report on Fisheries and Aquatic Sciences 2795: 21 pp.Google Scholar
  11. Gretz, M. R., M. L. Riccio, T. R. Hungwe, H. M. Burger, S. N. Kiemle, M. D. Apoya & S. A. Spaulding, 2006. Extracellular polymers of the stalked diatom Didymosphenia geminata. In Spaulding, S., R. Wiltshire & L. Elwell (conference organizers), Current Knowledge of Didymosphenia geminata: Developing a Research and Management Response. Federation of Fly Fishers and EPA Region 8, held in association with Western Division American Fisheries Society Annual Meeting, May 15–16: 2006, Montana State University, Montana, USA: 13 pp.Google Scholar
  12. Guerrini, F., M. Cangini, L. Boni, P. Trost & R. Pistocchi, 2000. Metabolic responses of the diatom Achnanthes brevipes (Bacillariophyceae) to nutrient limitation. Journal of Phycology 36: 882–890.CrossRefGoogle Scholar
  13. Huntsman, S. A. & J. H. Sloneker, 1971. An exocellular polysaccharide from the diatom Gomphonema olivaceum. Journal of Phycology 7: 261–264.Google Scholar
  14. Kilroy, C. A., 2008. Didymosphenia geminata in New Zealand: distribution, dispersal and ecology of a non-indigenous invasive species. In Bothwell, M. L. & S. A. Spaulding (eds), Proceedings of the 2007 International Workshop on Didymosphenia geminata. Canadian Technical Report on Fisheries and Aquatic Sciences 2795: 15–20.Google Scholar
  15. Kociolek, J. P. & E. F. Stoermer, 1988. A preliminary investigation of the phylogenetic relationships among the freshwater, apical pore field-bearing cymbelloid and gomphonemoid diatoms (Bacillariophyceae). Journal of Phycology 24: 377–385.Google Scholar
  16. Lee, P., M. M. Ring, C. Brown, B. W. Taylor & T. A. Wellnitz, 2008. How scour disturbance affects Didymosphenia geminata abundance and the associated epiphyte community. PS 35-13. 93rd ESA Annual Meeting, August 3–8, 2008, Milwaukee, Wisconsin, USA [available on internet at http://eco.confex.com/eco/2008/techprogram/P14254.HTM].
  17. Lewis, R. J., L. M. Johnson & K. D. Hoagland, 2002. Effects of cell density, temperature, and light intensity on growth and stalk production in the biofouling diatom Achnanthes longipes (Bacillariophyceae). Journal of Phycology 38: 1125–1131.CrossRefGoogle Scholar
  18. Moffat, M. C., 1994. An ultrastructural study of Didymosphenia geminata (Bacillariophyceae). Transactions of the American Microscopical Society 113: 59–71.CrossRefGoogle Scholar
  19. Novarino, G., 1993. Presence of minerals in the mucilage stalk of the diatom Achnanthes longipes. Diatom Research 8: 199–202.CrossRefGoogle Scholar
  20. Schmidt, J. M. & R. Y. Stanier, 1966. The development of cellular stalks in bacteria. Journal of Cell Biology 28: 423–436.PubMedCrossRefGoogle Scholar
  21. Sherbot, D. M. J. & M. L. Bothwell, 1993. Didymosphenia geminata (Gomphonemaceae). A review of the ecology of D. geminata and the physiochemical data of endemic catchments on Vancouver Island. National Hydrology Research Institute, Environment Canada, Saskatoon, Saskatchewan, NHRI Contribution No. 93005: 55 pp.Google Scholar
  22. Staats, N., B. De Winder, L. J. Stal & L. R. Mur, 1999. Isolation and characterization of extracellular polysaccharides from epipelic diatoms Cylindrotheca closterium and Navicula salinarum. European Journal of Phycology 34: 161–169.CrossRefGoogle Scholar
  23. Takeda, S., 1998. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393: 774–777.CrossRefGoogle Scholar
  24. Underwood, G. J. C., M. Boulcott, C. A. Raines & K. Waldron, 2004. Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition, and pathways of production. Journal of Phycology 40: 293–304.CrossRefGoogle Scholar
  25. Wang, Y., J. Lu, J.-C. Mollet, M. R. Gretz & K. D. Hoagland, 1997. Extracellular matrix assembly in diatoms (Bacillariophyceae). II. 2,6-Dichlorobenzonitrile inhibition of motility and stalk production in the marine diatom Achnanthes longipes. Plant Physiology 113: 1071–1080.PubMedCrossRefGoogle Scholar
  26. Wang, Y., Y. Chen, C. Lavin & M. R. Gretz, 2000. Extracellular matrix assembly in diatoms (Bacillariophyceae). IV. Ultrastructure of Achnanthes longipes and Cymbella cistula as revealed by high-pressure freezing/freeze substitution and cryo-field emission scanning electron microscopy. Journal of Phycology 36: 367–378.CrossRefGoogle Scholar
  27. Whitford, L. A., 1960. The current effect and growth of fresh-water algae. Transactions of the American Microscopical Society 79: 302–309.CrossRefGoogle Scholar
  28. Whitton, B. A., A. H. Al-Shehri, N. T. W. Ellwood & B. L. Turner, 2005. Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In Turner, B. L., E. Frossard & D. S. Baldwin (eds), Organic Phosphorus in the Environment. Commonwealth Agricultural Bureau, Wallingford: 205–241.CrossRefGoogle Scholar
  29. Whitton, B. A., N. T. W. Ellwood & B. Kawecka, 2009. Biology of the freshwater diatom Didymosphenia: a review. Hydrobiologia 630: 1–37.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Marina Aboal
    • 1
  • Sergio Marco
    • 1
  • Elena Chaves
    • 2
  • Iván Mulero
    • 2
  • Alfonsa García-Ayala
    • 2
  1. 1.Laboratorio de Algología, Departamento de Biología Vegetal, Facultad de BiologíaUniversidad de MurciaMurciaSpain
  2. 2.Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain

Personalised recommendations