Hydrobiologia

, Volume 694, Issue 1, pp 1–39 | Cite as

Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes

  • Erik Jeppesen
  • Thomas Mehner
  • Ian J. Winfield
  • Külli Kangur
  • Jouko Sarvala
  • Daniel Gerdeaux
  • Martti Rask
  • Hilmar J. Malmquist
  • Kerstin Holmgren
  • Pietro Volta
  • Susana Romo
  • Reiner Eckmann
  • Alfred Sandström
  • Saúl Blanco
  • Andu Kangur
  • Henrik Ragnarsson Stabo
  • Marjo Tarvainen
  • Anne-Mari Ventelä
  • Martin Søndergaard
  • Torben L. Lauridsen
  • Mariana Meerhoff
Review Paper

Abstract

Fish play a key role in the trophic dynamics of lakes. With climate warming, complex changes in fish assemblage structure may be expected owing to direct effects of temperature and indirect effects operating through eutrophication, water level changes, stratification and salinisation. We reviewed published and new long-term (10–100 years) fish data series from 24 European lakes (area: 0.04–5,648 km2; mean depth: 1–177 m; a north–south gradient from Sweden to Spain). Along with an annual temperature increase of about 0.15–0.3°C per decade profound changes have occurred in either fish assemblage composition, body size and/or age structure during recent decades and a shift towards higher dominance of eurythermal species. These shifts have occurred despite a reduction in nutrient loading in many of the lakes that should have benefited the larger-sized individuals and the fish species typically inhabiting cold-water, low-nutrient lakes. The cold-stenothermic Arctic charr has been particularly affected and its abundance has decreased in the majority of the lakes where its presence was recorded. The harvest of cool-stenothermal brown trout has decreased substantially in two southern lakes. Vendace, whitefish and smelt show a different response depending on lake depth and latitude. Perch has apparently been stimulated in the north, with stronger year classes in warm years, but its abundance has declined in the southern Lake Maggiore, Italy. Where introduced, roach seems to take advantage of the higher temperature after years of low population densities. Eurythermal species such as common bream, pike–perch and/or shad are apparently on the increase in several of the lakes. The response of fish to the warming has been surprisingly strong and fast in recent decades, making them ideal sentinels for detecting and documenting climate-induced modifications of freshwater ecosystems.

Keywords

Climate change Fish assemblages Functional traits Long-term data series Europe 

Notes

Acknowledgments

The authors thank A.M. Poulsen for editing the manuscript and Juana Jacobsen and Tinna Christensen for graphical assistance. This project was supported by the EU FP-7 Theme 6 projects WISER (Water bodies in Europe: Integrative Systems to assess Ecological Status and Recovery, Contract No.: 226273) and REFRESH (Adaptive strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, Contract No.: 244121), ‘CLEAR’ (a Villum Kann Rasmussen Centre of Excellence project) and CIRCE. The study was further supported by the Research Council for Nature and Universe (272-08-0406), the STF project CRES and the Greenland Climate Research Centre, the Estonian target funding project SF 0170006s08, the German Research Foundation (DFG, projects Me 1686/5-1, 5-2, 5-3), and CIPAIS (International Commission for the protection of Italian-Swiss waters) and CISPP (Italian-Swiss Commission for the Fishery). We are grateful to the Cofradía de Pescadores del Palmar (Valencia, Spain), Conselleria de Medio Ambiente de Valencia and AEMET for providing, respectively, fish capture data and chemical and meteorological data from Lake Albufera.

References

  1. Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. N. Bogutskaya, B. Coad, N. Mandrak, S. C. Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Ng, N. J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. Lopez, R. E. Reis, J. G. Lundberg, M. H. S. Perez & P. Petry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58: 403–414.CrossRefGoogle Scholar
  2. Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. van Donk, G. A. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.PubMedCrossRefGoogle Scholar
  3. Allen, A. P., J. H. Brown, J. H & J. F. Gillooly, 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297: 1545–1548.PubMedCrossRefGoogle Scholar
  4. Amarasinghe, U. S. & R. L. Welcomme, 2002. An analysis of fish species richness in natural lakes. Environmental Biology of Fishes 65: 327–339.CrossRefGoogle Scholar
  5. Ambrosetti, W. & L. Barbanti, 1999. Deep water warming in lakes: an indicator of climatic change. Journal of Limnology 58: 1–9.CrossRefGoogle Scholar
  6. Ambrosetti, W., L. Barbanti & A. Rolla, 2006. The climate of Lago Maggiore area during the last fifty years. Journal of Limnology 65: 1–62.CrossRefGoogle Scholar
  7. Anneville, O., S. Souissi, F. Ibanez, V. Ginot, J. C. Druart & N. Angeli, 2002. Temporal mapping of phytoplankton assemblages in Lake Geneva: annual and interannual changes in their patterns of succession. Limnology and Oceanography 47: 1355–1366.CrossRefGoogle Scholar
  8. Anneville, O., S. Souissi, S. Gammeter & D. Straile, 2004. Seasonal and inter-annual scales of variability in phytoplankton assemblages: comparison of phytoplankton dynamics in three peri-alpine lakes over a period of 28 years. Freshwater Biology 49: 98–115.CrossRefGoogle Scholar
  9. Anneville, O., S. Souissi, J. C. Molinero & D. Gerdeaux, 2009. Influences of human activity and climate on the stock-recruitment dynamics of whitefish, Coregonus lavaretus, in Lake Geneva. Fisheries Management and Ecology 16: 492–500.CrossRefGoogle Scholar
  10. Antonsson, Þ. & F. Árnason, 2011. Elliðaár 2010. Rannsóknir á fiskistofnum vatnakerfisins. Inst. Freshw. Fish. Report no. VMST/11030 (in Icelandic).Google Scholar
  11. Anwand, K., M. Valentin & T. Mehner, 2003. Species composition, growth and feeding ecology of fish community in Lake Stechlin—an overview. Archiv für Hydrobiologie, Special Issues Advances in Limnology 58: 237–246.Google Scholar
  12. APHA, 1992. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.Google Scholar
  13. Arvola, L., M. Rask, J. Ruuhijärvi, T. Tulonen, J. Vuorenmaa, T. Ruoho-Airola & J. Tulonen, 2010. Long-term patterns in pH and colour in small acidic boreal lakes of varying hydrological and landscape settings. Biogeochemistry 101: 269–279.CrossRefGoogle Scholar
  14. Ask, J., J. Karlsson, L. Persson, P. Ask, P. Byström & M. Jansson, 2009. Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes. Ecology 90: 1923–1932.PubMedCrossRefGoogle Scholar
  15. Axenrot, T., 2010a. Vätterns pelagiska fiskbestånd. In Lindell, M. (ed.), Årsskrift 2010. Rapport nummer 107 från Vätternvårdsförbundet [The Pelagic Fish Communities of Lake Vättern]. Vätternvårdsförbundet, Jönköping: 56–63.Google Scholar
  16. Axenrot, T., 2010b. Nors och siklöja. In Christensen, A. (ed.), Årsskrift 2010. Rapport nummer 57 från Vänerns vattenvårdsförbund [Smelt and Vendace]. Vänerns vattenvårdsförbund, Mariestad.Google Scholar
  17. Balayla, D. J., T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2010. Larger zooplankton in Danish lakes after cold winters: are fish kills of importance? Hydrobiologia 646: 159–172.CrossRefGoogle Scholar
  18. Blanck, A. & N. Lammouroux, 2007. Large-scale intraspecific variation in life-history traits of 44 European freshwater fish. Journal of Biogeography 34: 862–875.CrossRefGoogle Scholar
  19. Blanco, S. & S. Romo, 2006. Ictiofauna del lago de la Albufera de Valencia: evolución histórica y situación actual. Boletín Real Sociedad Española Historia Natural (Sección Biología) 101: 45–56.Google Scholar
  20. Blanco, S., S. Romo, M. J. Villena & S. Martinez, 2003. Fish communities and food web interactions in six shallow Mediterranean lakes. Hydrobiologia 506: 473–480.CrossRefGoogle Scholar
  21. Blenckner, T., R. Adrian, D. M. Livingstone, E. Jennings, G. A. Weyhenmeyer, D. G. George, T. Jankowski, M. Jarvinen, C. N. Aonghusa, T. Noges, D. Straile & K. Teubner, 2007. Large-scale climatic signatures in lakes across Europe: a meta-analysis. Global Change Biology 13: 1314–1326.CrossRefGoogle Scholar
  22. Brett, M., M. Kainz, S. Taipale & H. Seshan, 2009. Phytoplankton, not allochthonous carbon sustains herbivorous zooplankton production. Proceedings of the National Academy of Science 106: 21197–21201.CrossRefGoogle Scholar
  23. Brown, J. H., J. F. Gilloly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.CrossRefGoogle Scholar
  24. Burrows, M. T., D. S. Schoeman, L. B. Buckley, P. Moore, E. S. Poloczanska, K. M. Brander, C. Brown, J. F. Bruno, C. M. Duarte, B. S. Halpern, J. Holding, C. V. Kappel, W. Kiessling, M. I. O’Connor, J. M. Pandolfi, C. Parmesan, F. B. Schwing, W. J. Sydeman & A. J. Richardson, 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334: 652–655.PubMedCrossRefGoogle Scholar
  25. Böhling, P., R. Hudd, H. Lehtonen, P. Karås, E. Neuman & G. Thoresson, 1991. Variations in year-class strength of different perch (Perca-fluviatilis) populations in the Baltic Sea with special reference to temperature and pollution. Canadian Journal of Fisheries and Aquatic Sciences 48: 1181–1187.CrossRefGoogle Scholar
  26. Caranhac, F. & D. Gerdeaux, 1998. Analysis of the fluctuations in whitefish (Coregonus lavaretus) abundance in Lake Geneva. Archiv fur Hydrobiologie 50: 197–206.Google Scholar
  27. CEN, 2005. Water quality—sampling fish with multi-mesh gillnets. European Standard EN 14757:2005:E: 27 p.Google Scholar
  28. Corrigan, L. J., I. J. Winfield, R. A. Hoelzel & M. C. Lucas, 2011. Dietary plasticity in Arctic charr (Salvelinus alpinus) in response to long-term environmental change. Ecology of Freshwater Fish 20: 5–13.CrossRefGoogle Scholar
  29. Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106(12788): 12793.Google Scholar
  30. Degerman, E., J. Hammar, P. Nyberg & G. Svärdson, 2001. Human impact on the fish diversity in the four largest lakes of Sweden. AMBIO 30: 522–528.PubMedGoogle Scholar
  31. Durant, J. M., D. O. Hjermann, G. Ottersen & N. C. Stenseth, 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Research 33: 271–283.CrossRefGoogle Scholar
  32. Eckmann, R. & R. Rösch, 1998. Lake Constance fisheries and fish ecology. In E. Bäuerle & U. Gaedke (eds), Lake Constance, Characterization of an Ecosystem in Transition. Archiv für Hydrobiologie. Special Issues of Advanced Limnology 53: 285–301.Google Scholar
  33. Elliott, J. M. & J. A. Elliott, 2010. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. Journal of Fish Biology 77: 1793–1817.PubMedCrossRefGoogle Scholar
  34. Estlander, S., 2011. Fishes of the darkness—water colour regulated competitive interactions in humic lakes. PhD thesis, University of Helsinki.Google Scholar
  35. Estlander, S., L. Nurminen, M. Olin, M. Vinni, S. Immonen, M. Rask, J. Ruuhijärvi, J. Horppila & H. Lehtonen, 2010. Diet shift and food selection of (Perca fluviatilis) and roach (Rutilus rutilus) in humic lakes of varying water colour. Journal of Fish Biology 77: 241–256.PubMedCrossRefGoogle Scholar
  36. Feuchtmayr, H., R. Moran, K. Hatton, L. Conner, T. Heyes, B. Moss, I. Harvey & D. Atkinson, 2009. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. Journal of Applied Ecology 46: 713–723.CrossRefGoogle Scholar
  37. Feuchtmayr, H., S. J. Thackeray, I. D. Jones, M. De Ville, J. Fletcher, B. James & J. Kelly, 2012. Spring phytoplankton phenology – are patterns and drivers of change consistent among lakes in the same climatological region?. Freshwater Biology 57: 331–344.Google Scholar
  38. Forsius, M., T. Saloranta, L. Arvola, S. Salo, M. Verta, P. Ala-Opas, M. Rask & J. Vuorenmaa, 2010. Physical and chemical consequences of artificially deepened thermocline in a small humic lake—a paired whole-lake climate change experiment. Hydrological Earth Systems Science 14: 2629–2642.CrossRefGoogle Scholar
  39. Futter, M., M. Forsius, M. Holmberg & M. Starr, 2009. A long-term simulation of the effects of acidic deposition and climate change on surface water dissolved organic carbon concentrations in a boreal catchment. Hydrology Research 40: 291–305.CrossRefGoogle Scholar
  40. Fölster, J., E. Göransson, K. Johansson & A. Wilander, 2005. Synchronous variation in water chemistry for 80 lakes in southern Sweden. Environmental Monitoring and Assessment 102: 389–403.PubMedCrossRefGoogle Scholar
  41. Galassi, S., P. Volta, L. Guzzella & A. Calderoni, 2006. Cycling DDT and homologues at basin scale: the case of Lake Maggiore. Journal of Limnology 65: 100–106.CrossRefGoogle Scholar
  42. Gerdeaux, D., 1988. Fisheries management in an international lake: Lake Geneva. In W. Van Densen, B. Steinmetz & R. Hughes (eds), Management of Freshwater Fisheries Symposium Organized by EIFAC. PUDOC, Wageningen, NLD, Goteborg, SWE: 168–181.Google Scholar
  43. Gerdeaux, D., 2004. The recent restoration of the whitefish fisheries in Lake Geneva: the roles of stocking, reoligotrophication, and climate change. Annales Zoologici Fennici 41: 181–189.Google Scholar
  44. Gerdeaux, D., 2011. Does global warming threat the dynamics of Arctic char in Lake Geneva? Hydrobiologia 660: 69–78.CrossRefGoogle Scholar
  45. Gillet, C. & P. Quetin, 2006. Effect of temperature changes on the reproductive cycle of roach in Lake Geneva from 1983 to 2001. Journal of Fish Biology 69: 518–534.CrossRefGoogle Scholar
  46. Gillet, C. & J. P. Dubois, 2007. Effect of water temperature and size of females on the timing of spawning of perch Perca fluviatilis L. in Lake Geneva from 1984 to 2003. Journal of Fish Biology 70: 1001–1014.CrossRefGoogle Scholar
  47. Graham, C. T. & C. Harrod, 2009. Implications of climate change for the fishes of the British Isles. Journal of Fish Biology 74: 1143–1205.PubMedCrossRefGoogle Scholar
  48. Griffiths, D., 1997. Local and regional species richness in North American lacustrine fish. Journal of Animal Ecology 66: 49–56.CrossRefGoogle Scholar
  49. Griffiths, D., 2006. Pattern and process in the ecological biogeography of European freshwater fish. Journal of Animal Ecology 75: 734–751.PubMedCrossRefGoogle Scholar
  50. Guilizzoni, P., S. Levine, M. Manca, A. Marchetto, A. Lami, W. Ambrosetti., A. Brauer, E. Carrara, A. Rolla, L. Guzzella & A. L. Vignati, 2012. Ecological effects of multiple stressors on a deep lake (Lago Maggiore, Italy) integrating neo and paleological approaches. Journal of Limnology 71: 1–22.Google Scholar
  51. Güde, H., H. Rossknecht & G. Wagner, 1998. Anthropogenic impacts on the trophic state of Lake Constance during the 20th century. In E. Bäuerle & U. Gaedke (eds), Lake Constance, Characterization of an ecosystem in transition. Archiv für Hydrobiologie Special Issues of Advanced Limnology 53: 85–108.Google Scholar
  52. Hamrin, S. F. & L. Persson, 1986. Asymmetrical competition between age classes as a factor causing population oscillations in an obligate planktivorous fish. Oikos 47: 223–232.CrossRefGoogle Scholar
  53. Harrod, C., D. Griffiths, R. Rosell & T. K. McCarthy, 2002. Current status of the pollan (Coregonus autumnalis Pallas 1776) in Ireland. Archiv für Hydrobiologie. Special Issues Advances in Limnology 57: 627–638.Google Scholar
  54. Hartmann, J., 1977. Fischereiliche Veranderungen in kulturbedingt eutrophierenden Seen. Schweizerische Zhurnal der Hydrologie 39: 243–254.CrossRefGoogle Scholar
  55. Heibo, E., C. Magnhagen & L. A. Vøllestad, 2005. Latitudinal variation in life-history traits in Eurasian perch. Ecology 86: 3377–3386.CrossRefGoogle Scholar
  56. Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.PubMedCrossRefGoogle Scholar
  57. Helminen, H. & J. Sarvala, 1994. Population regulation of vendace (Coregonus albula) in Lake Pyhäjärvi, southwest Finland. Journal of Fish Biology 45: 387–400.Google Scholar
  58. Helminen, H., H. Auvinen, A. Hirvonen, J. Sarvala & J. Toivonen, 1993. Year-class fluctuations of vendace (Coregonus albula) in Lake Pyhäjärvi, southwest Finland, in 1971–1990. Canadian Journal of Fisheries and Aquatic Sciences 50: 925–931.CrossRefGoogle Scholar
  59. Helminen, H., J. Sarvala & J. Karjalainen, 1997. Patterns in vendace recruitment in Lake Pyhäjärvi, south-west Finland. Journal of Fish Biology 51: 303–316.CrossRefGoogle Scholar
  60. Hickling, R., D. B. Roy, J. K. Hill, R. Fox & C. D. Thomas, 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology 12: 450–455.CrossRefGoogle Scholar
  61. Holmgren, K., 1999. Between-year variation in community structure and biomass-size distributions of benthic lake fish communities. Journal of Fish Biology 55: 535–552.Google Scholar
  62. Holmgren, K., 2009. Trender i IKEU-sjöarnas fiskfauna och jämförelser med okalkade referenssjöar (kapitel 2a:5 i Utvärdering av IKEU 1990–2006—Syntes och förslag). Naturvårdsverket, Stockholm, Rapport 6302: 216–238. (in Swedish).Google Scholar
  63. Holmgren, K. & M. Appelberg, 2001. Effects of environmental factors on size-related growth efficiency of perch, Perca fluviatilis. Ecology of Freshwater Fish 10: 247–256.CrossRefGoogle Scholar
  64. Holopainen, I. J., W. M. Tonn & C. A. Paszkowski, 1997. Tales of two fish: the dichotomous biology of crucian carp (Carassius carassius (L.)) in northern Europe. Annales Zoologici Fennici 34: 1–22.Google Scholar
  65. Hudson, A. G., P. Vonlanthen & O. Seehausen, 2011. Rapid parallel adaptive radiations from a single hybridogenic ancestral population. Proceeding of the Royal Society of London: Biological Sciences 278: 58–66.CrossRefGoogle Scholar
  66. IGKB, 2004. Limnologischer Zustand des Bodensees 31. Available from the Internationale Gewässerschutzkommisson für den Bodensee (IGKB). 2. Auflage. Bregenz, Austria. ISBN 3-902290-04-8. pp. 31–39 (in German).Google Scholar
  67. IMO, 2011. Icelandic Meteorological Office database extraction no. 2011-08-21/01.Google Scholar
  68. IPCC, 2007. Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  69. Jackson, L. J., M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2007. A comparison of shallow Danish and Canadian lakes and implications of climate change. Freshwater Biology 52: 1782–1792.CrossRefGoogle Scholar
  70. Jeppesen, E., M. Søndergaard, J. P. Jensen, E. Mortensen, A.-M. Hansen & T. Jørgensen, 1998. Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading: an 18-year-study of a shallow hypertrophic lake. Ecosystems 1: 250–267.CrossRefGoogle Scholar
  71. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. L. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish Lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201–218.CrossRefGoogle Scholar
  72. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, K. Kangur, J. Köhler, S. Körner, E. Lammens, T. L. Lauridsen, M. Manca, R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willén & M. Winder, 2005. Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  73. Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, M. Beklioglu, A. Özen & J. E. Olesen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1030–1041.CrossRefGoogle Scholar
  74. Jeppesen, E., M. Meerhoff, K. Holmgren, I. González-Bergonzoni, F. Teixeira-de Mello, S. A. J. Declerck, L. DeMeester, M. Søndergaard, T. L. Lauridsen, R. Bjerring, J. M. Conde-Porcuna, N. Mazzeo, C. Iglesias, M. Reizenstein, H. J. Malmquist, Z. Liu, D. Balayla & X. Lazzaro, 2010a. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646: 73–90.CrossRefGoogle Scholar
  75. Jeppesen, E., B. Moss, H. Bennion, L. Carvalho, L. DeMeester, H. Feuchtmayr, N. Friberg, M. O. Gessner, M. Hefting, T. L. Lauridsen, L. Liboriussen, H. Malmquist, L. May, M. Meerhoff, J. S. Olafsson, M. B. Soons & J. T. A. Verhoeven, 2010b. Chapter 6: Interaction of climate and eutrophication. In Kernan, M., R. Battarbee & B. Moss (eds), Changing Climate and Changing Freshwaters: A European Perspective. Blackwell, London.Google Scholar
  76. Jeppesen, E., B. Kronvang, J. E. Olesen, M. Søndergaard, C. C. Hoffmann, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, M. Meerhoff, M. Beklioglu & A. Özen, 2011. Climate change effect on nitrogen loading from catchment in Europe: implications for nitrogen retention and ecological state of lakes and adaptations. Hydrobiologia 663: 1–21.CrossRefGoogle Scholar
  77. Jobling, M., 1983. Influence of body weight and temperature on growth rates of Arctic charr, Salvelinus alpinus (L.). Journal of Fish Biology 22: 471–475.CrossRefGoogle Scholar
  78. Jones, I. D., I. J. Winfield & F. Carse, 2008. Assessment of long-term changes in habitat availability for Arctic charr (Salvelinus alpinus) in a temperate lake using oxygen profiles and hydroacoustic surveys. Freshwater Biology 53: 393–402.Google Scholar
  79. Kangur, K. & T. Möls, 2008. Changes in spatial distribution of phosphorus and nitrogen in the large north-temperate lowland Lake Peipsi (Estonia/Russia). Hydrobiologia 599: 31–39.CrossRefGoogle Scholar
  80. Kangur, P., A. Kangur, K. Kangur & T. Möls, 2003. Condition and growth of ruffe Gymnocephalus cernuus (L.) in two large shallow lakes with different fish fauna and food recourse. Hydrobiologia 506–509: 435–441.CrossRefGoogle Scholar
  81. Kangur, K., A. Kangur, P. Kangur & R. Laugaste, 2005. Fish kill in Lake Peipsi in summer 2002 as a synergistic effect of cyanobacterial bloom, high temperature and low water level. Proceedings of the Estonian Academy of Sciences Biology, Ecology 54: 67–80.Google Scholar
  82. Kangur, A., P. Kangur, K. Kangur & T. Möls, 2007a. The role of temperature in the population dynamics of smelt Osmerus eperlanus eperlanus m. spirinchus Pallas in Lake Peipsi (Estonia/Russia). Hydrobiologia 584: 433–441.CrossRefGoogle Scholar
  83. Kangur, K., Y.-S. Park, A. Kangur, P. Kangur & S. Lek, 2007b. Patterning long-term changes of fish community in large shallow Lake Peipsi. Ecological Modelling 203: 34–44.CrossRefGoogle Scholar
  84. Kangur, A., P. Kangur, E. Pihu, V. Vaino, M. Tambets, T. Krause & K. Kangur, 2008. Fishes and fishery. In Haberman, J., T. Timm & A. Raukas (eds), Peipsi. Publishing house Eesti Loodusfoto, Tartu: 317–340. (in Estonian).Google Scholar
  85. Karlsson, J., P. Byström, J. Ask, P. Ask, L. Persson & M. Jansson, 2009. Light limitation of nutrient-poor lake ecosystems. Nature 460: 506–509.PubMedCrossRefGoogle Scholar
  86. Keskitalo, J., K. Salonen & A.-L. Holopainen, 1998. Long-term fluctuations in environmental conditions, plankton and macrophytes in a humic lake, Valkea-Kotinen. Boreal Environment Research 3: 251–262.Google Scholar
  87. Klemetsen, A., 2010. The charr problem revisited: exceptional phenotypic plasticity promotes ecological speciation in postglacial lakes. Freshwater Reviews 3: 49–74.CrossRefGoogle Scholar
  88. Kosten, S., V. L. M. Huszar, E. Bécares, L. S. Costa, E. van Donk, L.-A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. De Meester, B. Moss, M. Lürling, T. Ñoges, S. Romo & M. Scheffer, 2012. Warmer climate boosts cyanobacterial dominance in lakes. Global Change Biology 18: 118–126.CrossRefGoogle Scholar
  89. Kristmundsson, Á., Th. Antonsson & F. Árnason, 2010. First record of proliferative kidney disease in Iceland. Bulletin of the European Association of Fish Pathologists 30: 35–40.Google Scholar
  90. Kristmundsson, Á., Th. Antonsson & F. Árnason, 2011. Proliferative kidney disease (PKD) in Iceland – possible negative impact on wild salmonid populations. Abstract book, p. 125. 15th International Conference on Diseases of Fish and Shellfish, Split, Croatia,Google Scholar
  91. Langangen, O., E. Edeline, J. Ohlberger, I. J. Winfield, J. M. Fletcher, J. B. James, N. Chr. Stenseth & L. A. Vøllestad, 2011. Six decades of pike and perch population dynamics in Windermere. Fisheries Research 109: 131–139.CrossRefGoogle Scholar
  92. Lappalainen, J. & H. Lehtonen, 1997. Temperature habitats for freshwater fishes in a warming climate. Boreal Environment Research 2: 69–84.Google Scholar
  93. Lappalainen, J. & A. S. Tarkan, 2007. Latitudinal gradients in onset date, onset temperature and duration of spawning of roach. Journal of Fish Biology 70: 441–450.CrossRefGoogle Scholar
  94. Lappalainen, J., H. Lehtonen, P. Böhling & V. Erm, 1996. Covariation in year-class strength of perch, Perca fluviatilis L. and pikeperch, Stizostedion lucioperca (L.). Annales Zoologici Fennici 33: 421–426.Google Scholar
  95. Lappalainen, J., A. S. Tarkan & C. Harrod, 2008. A meta-analysis of latitudinal variations in life-history traits of roach, Rutilus rutilus, over its geographical range: linear or non-linear relationships? Freshwater Biology 53: 1491–1501.CrossRefGoogle Scholar
  96. Le Cren, E. D., 2001. The Windermere perch and pike project. Freshwater Forum 15: 3–34.Google Scholar
  97. Lyytikäinen, T., P. Pylkkö, O. Ritola & P. Lindström- Seppä, 2002. The effect of acute stress and temperature on plasma cortisol and ion concentrations and growth of Lake Inari Arctic charr, Salvelinus alpinus. Environmental Biology of Fishes 64: 195–202.CrossRefGoogle Scholar
  98. Malmquist, H. J., 2004. Life history traits of Arctic charr and environmental factors: local variability and latitudinal gradients. The ACIA International Scientific Symposium on Climate Change in the Arctic: Extended Abstracts. AMAP Report 2004:4. Poster Session A2: Paper 8: 45-47.Google Scholar
  99. Malmquist, H. J., Þ. Antonsson, H. R. Ingvason & F. Árnason, 2009. Salmonid fish and warming of shallow Lake Elliðavatn in Southwest Iceland. Verhandlungen der Internationale Vereinigung der Limnologie 30: 1127–1132.Google Scholar
  100. Malmquist, H. J., F. Ingimarsson, H. R. Ingvason & S. M. Stefánsson, 2010. Climate change and its effects on lakes in SW–Iceland. Extended abstract. In Andradottir, H.O. (ed.), Proceedings of the 14th International Workshop on Physical Processes in Natural Waters, June 28–July 1, 2010, Reykjavík: 34–35.Google Scholar
  101. Marchetto, A., A. Lami, S. Musazzi, J. Masaferro, L. Langone & P. Guilizzoni, 2004. Lake Maggiore (N. Italy) trophic history: fossil diatoms, plant pigments, chironomids and comparison with long-term limnological data. Quaternary International 113: 97–110.CrossRefGoogle Scholar
  102. Marjomäki, T. J. & M. Huolila, 2001. Long-term dynamics of pelagic fish density and vendace (Coregonus albula (L.)) stocks in four zones of a lake differing in trawling intensity. Ecology of Freshwater Fish 10: 65–74.CrossRefGoogle Scholar
  103. Marjomäki, T. J., H. Auvinen, H. Helminen, A. Huusko, J. Sarvala, P. Valkeajärvi, M. Viljanen & J. Karjalainen, 2004. Spatial synchrony in the inter-annual population variation of vendace (Coregonus albula (L.)) in Finnish lakes. Annales Zoologici Fennici 41: 225–240.Google Scholar
  104. McKee, D., D. Atkinson, S. Colling, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes, D. Wilson & B. Moss, 2003. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnology & Oceanography 48: 707–722.Google Scholar
  105. Meerhoff, M., J. M. Clemente, F. Teixeira-de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007a. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.CrossRefGoogle Scholar
  106. Meerhoff, M., C. Iglesias, F. Teixeira-de Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007b. Effects of contrasting climates and habitat complexity on community structure and predator avoidance behaviour of zooplankton in the shallow lake littoral. Freshwater Biology 52: 1009–1021.CrossRefGoogle Scholar
  107. Meerhoff, M., F. Teixeira-de Mello, C. Kruk, C. Alonso, I. González-Bergonzoni, J. P. Pacheco, G. Lacerot, M. Arim, M. Beklioğlu, S. Brucet, G. Goyenola, C. Iglesias, N. Mazzeo, S. Kosten & E. Jeppesen, 2012. Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approach. Advances in Ecological Research 46.Google Scholar
  108. Mehner, T., H. Dörner & H. Schultz, 1998. Factors determining the year-class strength of age-0 Eurasian perch (Perca fluviatilis L.) in a biomanipulated reservoir. Archive of Fishery and Marine Research 46: 241–251.Google Scholar
  109. Mehner, T., M. Diekmann, U. Brämick & R. Lemcke, 2005. Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human use intensity. Freshwater Biology 50: 70–85.CrossRefGoogle Scholar
  110. Mehner, T., K. Holmgren, T. Lauridsen, E. Jeppesen & M. Diekmann, 2007. Lake depth and geographical position modify lake fish assemblages of the European ‘Central Plains’ ecoregion. Freshwater Biology 52: 2285–2297.CrossRefGoogle Scholar
  111. Mehner, T., M. Emmrich & P. Kasprzak, 2011. Discrete thermal windows cause opposite response of sympatric cold-water fish species to annual temperature variability. Ecosphere 2: 104.CrossRefGoogle Scholar
  112. Milbrink, G., T. Vrede, L. J. Tranvik & E. Rydin, 2011. Large-scale and long-term decrease in fish growth following the construction of hydroelectric reservoirs. Canadian Journal of Fisheries and Aquatic Sciences 68: 2167–2173.CrossRefGoogle Scholar
  113. Mills, C. M., 1988. The effect of extreme northerly climatic conditions on the life history of the minnow, Phoxinus phoxinus (L.). Journal of Fish Biology 33: 545–561.CrossRefGoogle Scholar
  114. Mims, M. C., J. D. Olden, Z. R. Shattuck & N. L. Poff, 2010. Life history trait diversity of native freshwater fishes in North America. Ecology of Freshwater Fish 19: 390–400.CrossRefGoogle Scholar
  115. Monteith, D. T., J. L. Stoddard, C. D. Evans, H. A. de Wit, M. Forsius, T. Høgåsen, A. Wilander, B. L. Skjelkvåle, D. S. Jeffries, J. Vuorenmaa, B. Keller, J. Kopacek & J. Vesely, 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537–540.PubMedCrossRefGoogle Scholar
  116. Mooij, W. M., J. H. Janse, L. N. Senerpont Domis, S. Hülsmann & B. W. Ibelings, 2007. Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia 584: 443–454.CrossRefGoogle Scholar
  117. Morabito, G., 2007. Variazioni climatiche interrannuali e dinamica stagionale del fitoplancton nel Lago Maggiore. In Carli, B., G. Cavarretta, M. Colacino & S. Fuzzi (eds), Clima e Cambiamenti Climatici - le attività di ricerca del CNR. Consiglio Nazionale delle Ricerche, Roma: 617–620.Google Scholar
  118. Mosello, R. & D. Ruggiu, 1985. Nutrient Load, trophic condition and restoration prospects of Lake Maggiore. Internationale Revue der gesamten Hydrobiologie 70: 63–75.CrossRefGoogle Scholar
  119. Moss, B., S. Kosten, M. Meerhoff, R. W. Battarbee, E. Jeppesen, N. Mazzeo, K. Havens, G. Lacerot, Z. Liu, L. De Meester, H. Paerl & M. Scheffer, 2011. Allied attack: climate change and eutrophication. Inland Waters 1:101–105.Google Scholar
  120. Nyberg, P., E. Degerman, E. Bergstrand & O. Enderlein, 2001. Recruitment of pelagic fish in an unstable climate: studies in Sweden’s four largest lakes. AMBIO 30: 559–564.PubMedGoogle Scholar
  121. Ohlberger, J., T. Mehner, G. Staaks & F. Hölker, 2008a. Temperature-related physiological adaptations promote ecological divergence in a sympatric species pair of temperate freshwater fish, Coregonus spp. Functional Ecology 22: 501–508.CrossRefGoogle Scholar
  122. Ohlberger, J., G. Staaks, T. Petzoldt, T. Mehner & F. Hölker, 2008b. Physiological specialization by thermal adaptation drives ecological divergence in a sympatric fish species pair. Evolutionary Ecology Research 10: 1173–1185.Google Scholar
  123. Olalla-Tárraga, M. Á., 2011. “Nullius in Bergmann” or the pluralistic approach to ecogeographical rules: a reply to Watt et al. (2010). Oikos 120: 1441–1444.CrossRefGoogle Scholar
  124. Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 42: 37–42.CrossRefGoogle Scholar
  125. Paxton, C. G. M., I. J. Winfield, J. M. Fletcher, D. G. George & D. P. Hewitt, 2004. Biotic and abiotic influences on the recruitment of perch (Perca fluviatilis) in Windermere, UK. Journal of Fish Biology 65: 1622–1642.CrossRefGoogle Scholar
  126. Paxton, C. G. M., I. J. Winfield, J. M. Fletcher, D. G. George & D. P. Hewitt, 2009. Investigation of first year biotic and abiotic influences on the recruitment of pike Esox lucius over 48 years in Windermere, UK. Journal of Fish Biology 74: 2279–2298.PubMedCrossRefGoogle Scholar
  127. Perry, A. L., P. J. Low, J. R. Ellis & J. D. Reynolds, 2005. Climate change and distribution shifts in marine fishes. Science 308: 1912–1915.PubMedCrossRefGoogle Scholar
  128. Persson, L., S. Diehl, L. Johansson, G. Andersson & S. F. Hamrin, 1991. Shifts in fish communities along the productivity gradient of temperate lakes—patterns and the importance of size-structured interactions. Journal of Fish Biology 38: 281–293.CrossRefGoogle Scholar
  129. Persson, L., P. Byström & E. Wahlström, 2000. Cannibalism and competition in Eurasian perch: population dynamics of an ontogenetic omnivore. Ecology 81: 1058–1071.CrossRefGoogle Scholar
  130. Puro-Tahvanainen, A. & E. Salonen, 2010. Ilmastonmuutoksen vaikutukset Inarijärven hydrologiaan, veden laatuun ja kaloihin [Effects of climate change on the hydrology, water quality and fishes in Lake Inari, North Finland]. In Simola, H. (ed.), Symposium on Large Lakes 2010. Publications of the University of Eastern Finland, Reports and Studies in Forestry and Natural Sciences 4: 23–29.Google Scholar
  131. Raitaniemi, J., M. Rask & P. J. Vuorinen, 1988. The growth of perch, Perca fluviatilis L., in small Finnish lakes at different stages of acidification. Annales Zoologica Fennici 25: 209–219.Google Scholar
  132. Rask, M., 1983. Differences in growth of perch (Perca fluviatilis L.) in two small forest lakes. Hydrobiologia 101: 139–144.CrossRefGoogle Scholar
  133. Rask, M., A.-L. Holopainen, A. Karusalmi, R. Niinioja, J. Tammi, L. Arvola, J. Keskitalo, I. Blomqvist, S. Heinimaa, C. Karppinen, K. Salonen & J. Sarvala, 1998. An introduction to the limnology of Finnish Integrated Monitoring lakes. Boreal Environment Research 3: 263–274.Google Scholar
  134. Renberg, I., R. Bindler, E. Bradshaw, O. Emteryd, J. Englund & P. Leavitt, 2003. Paleolimnologiska undersökningar i Vättern och Vänern. Vätternvårdsförbundet, Rapport nr 75. 2003. ISSN 1102-3791 (in Swedish).Google Scholar
  135. Reyjol, Y., P. Fischer, S. Lek, R. Rösch & R. Eckmann, 2005. Studying the spatio-temporal variation of the littoral fish community of Lake Constance (Germany), using Self-Organizing mapping. Canadian Journal of Fisheries and Aquatic Sciences 61: 2294–2302.CrossRefGoogle Scholar
  136. Robinson, B. W. & D. Schluter, 2000. Natural selection and the evolution of adaptive genetic variation in northern freshwater fishes. In Mosseau, T. A., B. Sinervo & J. A. Endler (eds), Adaptive Genetic Variation in the Wild. Oxford University Press, Oxford.Google Scholar
  137. Romo, S., M. J. Villena, M. Sahuquillo, J. Soria, M. Giménez, T. Alfonso, E. Vicente & M. R. Miracle, 2005. Response of a shallow Mediterranean lake to nutrient diversion: does it follow similar patterns as northern shallow lakes? Freshwater Biology 50: 1706–1717.CrossRefGoogle Scholar
  138. Romo, S., A. García-Murcia, M. J. Villena, V. Sánchez & A. Ballester, 2008. Tendencias del fitoplancton en el lago de la Albufera de Valencia e implicaciones para su ecología, gestión y recuperación. Limnetica 27: 11–28.Google Scholar
  139. Romo, S., F. Fernández, Y. Ouahid & A. Barón-Solá, 2012a. Assessment of microcystins in lake water and fish (Mugilidae, Liza sp.) in the largest Spanish coastal lake. Environmental Monitoring and Assessment 184: 939–949.Google Scholar
  140. Romo, S., J. Soria, F. Fernández, Y. Ouahid & A. Barón-Solá, 2012b. Water residence time and the dynamics of toxic cyanobacteria. Freshwater Biology. doi:10.1111/j.1365-2427.2012.02734.x.Google Scholar
  141. Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig & J. A. Pounds, 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57–60.PubMedCrossRefGoogle Scholar
  142. Ruuhijärvi, J., M. Rask, S. Vesala, A. Westermark, M. Olin, J. Keskitalo & A. Lehtovaara, 2010. Recovery of the fish community and changes in the lower trophic levels in a eutrophic lake after a winter kill of fish. Hydrobiologia 646: 145–158.CrossRefGoogle Scholar
  143. Salmaso, N., G. Morabito, L. Garibaldi & R. Mosello, 2007. Trophic development of the deep lakes south of the Alps: a comparative analysis. Fundamental and Applied Limnology/Archiv für Hydrobiologie 170: 177–196.CrossRefGoogle Scholar
  144. Sarvala, J. & H. Helminen, 1996. Year-class fluctuations of perch (Perca fluviatilis) in Lake Pyhäjärvi, southwest Finland. Annales Zoologici Fennici 33: 389–396.Google Scholar
  145. Sarvala, J., H. Helminen & H. Auvinen, 1998. Portrait of a flourishing freshwater fishery: Pyhäjärvi, a lake in SW-Finland. Boreal Environment Research 3: 329–345.Google Scholar
  146. Snorrason, S. S. & S. Skúlason, 2004. Adaptive speciation in northern freshwater fish—patterns and processes. In Diekmann, U., H. Metz, M. Doebel & D. Tautz (eds), Adaptive Speciation. Cambridge University Press, Cambridge.Google Scholar
  147. Soares, M. G. M., N. A. Menezes & W. J. Junk, 2006. Adaptations of fish to oxygen depletion in a central Amazonian floodplain lake. Hydrobiologia 568: 353–367.CrossRefGoogle Scholar
  148. Sobek, S., L. J. Tranvik, Y. T. Prairie, P. Kortelainen & J. J. Cole, 2007. Patterns and regulation of dissolved organic carbon: an analysis of 7500 widely distributed lakes. Limnology and Oceanography 52: 1208–1219.CrossRefGoogle Scholar
  149. Sterud, E., T. Forseth, O. Ugedal, T. T. Poppe, A. Jørgensen, T. Bruheim, H.-P. Fjeldstad & T. Atle Mo, 2007. Severe mortality in wild Atlantic salmon Salmo salar due to proliferative kidney disease (PKD) caused by Tetracapsuloides bryosalmonae (Myxozoa). Diseases of Aquatic Organisms 77: 191–198.PubMedCrossRefGoogle Scholar
  150. Straile, D., D. M. Livingston, G. A. Weyhenmeyer & D. G. George, 2003. The response of freshwater ecosystems to climate variability associated with the North Atlantic Oscillation. In Hurrell, J. W., Y. Kushnir, G. Ottersen & M. Visbeck (eds), The North Atlantic Oscillation: Climatic Significance and Environmental Impact. AGU Geophysical Monograph Series, Washington, DC: 263–279.CrossRefGoogle Scholar
  151. Straile, D., R. Eckmann, T. Jungling, G. Thomas & H. Loffler, 2007. Influence of climate variability on whitefish (Coregonus lavaretus) year-class strength in a deep, warm monomictic lake. Oecologia 151: 521–529.PubMedCrossRefGoogle Scholar
  152. Teixeira-de Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.CrossRefGoogle Scholar
  153. Tewksbury, J. J., R. B. Huey & C. A. Deutsch, 2008. Putting the heat on tropical animals. Science 320: 1296–1297.PubMedCrossRefGoogle Scholar
  154. Thackeray, S. J., T. H. Sparks, M. Frederiksen, S. Burthe, P. J. Bacon, J. Bell, M. S. Botham, T. M. Brereton, P. W. Bright, L. Carvalho, T. Clutton-Brock, A. Dawson, M. Edwards, J. Elliott, R. Harrington, D. Johns, I. D. Jones, J. T. Jones, D. I. Leech, D. B. Roy, W. A. Scott, M. Smith, R. J. Smithers, I. J. Winfield & S. Wanless, 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology 16: 3304–3313.CrossRefGoogle Scholar
  155. Thomas, G. & R. Eckmann, 2007. The influence of eutrophication and population biomass on common whitefish (Coregonus lavaretus) growth—the Lake Constance example revisited. Canadian Journal of Fisheries and Aquatic Sciences 64: 402–410.CrossRefGoogle Scholar
  156. Thomas, G., H. Quoss, J. Hartmann & R. Eckmann, 2009. Human-induced changes in the reproductive traits of Lake Constance common whitefish (Coregonus lavaretus). Journal of Evolutionary Biology 22: 88–96.PubMedCrossRefGoogle Scholar
  157. Thomas, G., R. Rösch & R. Eckmann, 2010. Seasonal and long-term changes in fishing depth of Lake Constance whitefish. Fisheries Management and Ecology 17: 386–393.CrossRefGoogle Scholar
  158. Thorpe, J. E., 1977. Morphology, physiology, behavior, and ecology of Perca fluviatilis L. and P. flavescens Mitchill. Journal of the Fisheries Research Board of Canada 34: 1504–1514.CrossRefGoogle Scholar
  159. Tolonen, A., J. Lappalainen & E. Pulliainen, 2003. Seasonal growth and year class strength variations of perch near the northern limits of its distribution range. Journal of Fish Biology 63: 176–186.CrossRefGoogle Scholar
  160. Townsend, C. R., 1989. Population cycles in freshwater fish. Journal of Fish Biology 35(Suppl A): 125–131.Google Scholar
  161. Thórðarson, T., 2003. Environmental quality of lake Elliðavatn 2001–2002. University Centre at Hveragerði: 60 pp. (In Icelandic, English summary).Google Scholar
  162. Tranvik, L. J., J. Downing, J. Cotner, S. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L. B. Knoll, P. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. M. Leech, S. L. McCallister, D. M. McKnight, J. M. Melack, E. Overholt, J. A. Porter, Y. Prairie, W. H. Renwick, F. Roland, B. S. Sherman, D. W. Schindler, S. Sobek, A. Tremblay, M. J. Vanni, A. M. Verschoor, E. von Wachenfeldt & G. A. Weyhenmeyer, 2009. Lakes and impoundments as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314.CrossRefGoogle Scholar
  163. Trippel, E. A., R. Eckmann & J. Hartmann, 1991. Potential effects of global warming on whitefish in Lake Constance, Germany. AMBIO 20: 226–231.Google Scholar
  164. Ukonmaanaho, L., M. Starr, J.-P. Hirvi, A. Kokko, P. Lahermo, J. Mannio, T. Paukola, T. Ruoho-Airola & H. Tanskanen, 1998. Heavy metal concentrations in various aqueous and biotic media in Finnish Integrated Monitoring catchments. Boreal Environment Research 3: 235–249.Google Scholar
  165. Van Doorslaer, W., R. Stoks, E. Jeppesen & L. De Meester, 2007. Adaptive microevolutionary responses to simulated global warming in Simocephalus vetulus: a mesocosm study. Global Change Biology 4: 878–886.CrossRefGoogle Scholar
  166. Venne, H. & P. Magnan, 1989. Life history tactics in landlocked Arctic charr (Salvelinus alpinus): a working hypothesis. Physiology and Ecology Japan 1: 239–248.Google Scholar
  167. Ventelä, A.-M., M. Tarvainen, H. Helminen & J. Sarvala, 2007. Long-term management of Pyhäjärvi (southwest Finland): eutrophication, restoration—recovery? Lake and Reservoir Management 23: 428–438.CrossRefGoogle Scholar
  168. Ventelä, A.-M., T. Kirkkala, A. Lendasse, M. Tarvainen, H. Helminen & J. Sarvala, 2011. Climate related challenges in long-term management of Säkylän Pyhäjärvi (SW Finland). Hydrobiologia 660: 49–58.CrossRefGoogle Scholar
  169. Villena, M. J. & S. Romo, 2003. Phytoplankton changes in a shallow Mediterranean lake (Albufera of Valencia, Spain) after sewage diversion. Hydrobiologia 506: 281–287.CrossRefGoogle Scholar
  170. Vila-Gispert, A., R. Moreno-Amich & E. García-Berhou, 2002. Gradients of life-history variation: an intercontinental comparison of fishes. Review in Fish Biology and Fisheries 12: 417–427.CrossRefGoogle Scholar
  171. Volta, P. & N. Jepsen, 2008. The recent invasion of roach (Pisces: Cyprinidae) in a large South-Alpine Lake. Journal of Limnology 67: 163–170.CrossRefGoogle Scholar
  172. Volta, P., P. Tremolada, M. C. Neri, G. Giussani & S. Galassi, 2009. Age-dependent bioaccumulation of organochlorine compounds in fish and their selective biotransformation in top predators from Lake Maggiore (Italy). Water Air & Soil Pollution 197: 193–209.CrossRefGoogle Scholar
  173. Volta, P., A. Oggioni, R. Bettinetti & E. Jeppesen, 2011. Assessing lake typologies and indicator fish species for Italian natural lakes using past fish richness and assemblages. Hydrobiologia 671: 227–240.CrossRefGoogle Scholar
  174. Voutilainen, A. & H. Huuskonen, 2010. Long-term changes in the water quality and fish community of a large boreal lake affected by rising water temperatures and nutrient-rich sewage discharges – with special emphasis on the European perch. Knowledge and Management of Aquatic Ecosystems 397: 03.Google Scholar
  175. Vuorenmaa, J., 2004. Long-term changes in acidifying precipitation in Finland (1973-2000). Environmental Pollution 128: 351–362.PubMedCrossRefGoogle Scholar
  176. Vuorenmaa, J. & P. Horppila, 2011. Long-term changes in water quality and catchment hydrology in Lake Valkea-Kotinen. Summary report of 20 year research and monitoring at Valkea-Kotinen site, southern Finland. The Finnish Environment 34(2011): 53–62 (in Finnish).Google Scholar
  177. Watson, J., 1899. The English Lake District Fisheries. George Routledge and Sons Ltd, London.CrossRefGoogle Scholar
  178. Winfield, I. J., J. M. Fletcher, D. P. Hewitt & J. B. James, 2004. Long-term trends in the timing of the spawning season of Eurasian perch (Perca fluviatilis) in the north basin of Windermere, UK. In Barry, T. P. & J. A. Malison (eds), Proceedings of Percis III: The Third International Percid Fish Symposium. University of Wisconsin Sea Grant Institute, Madison: 95–96.Google Scholar
  179. Winfield, I. J., J. M. Fletcher & J. B. James, 2008a. The Arctic charr (Salvelinus alpinus) populations of Windermere, UK: population trends associated with eutrophication, climate change and increased abundance of roach (Rutilus rutilus). Environmental Biology of Fishes 83: 25–35.CrossRefGoogle Scholar
  180. Winfield, I. J., J. B. James & J. M. Fletcher, 2008b. Northern pike (Esox lucius) in a warming lake: changes in population size and individual condition in relation to prey abundance. Hydrobiologia 601: 29–40.CrossRefGoogle Scholar
  181. Winfield, I. J., J. M. Fletcher & J. B. James, 2010a. An overview of fish species introductions to the English Lake District, UK, an area of outstanding conservation and fisheries importance. Journal of Applied Ichthyology 26: 60–65.CrossRefGoogle Scholar
  182. Winfield, I. J., J. Hateley, J. M. Fletcher, J. B. James, C. W. Bean & P. Clabburn, 2010b. Population trends of Arctic charr (Salvelinus alpinus) in the UK: assessing the evidence for a widespread decline in response to climate change. Hydrobiologia 650: 55–65.CrossRefGoogle Scholar
  183. Winfield, I. J., J. M. Fletcher & J. B. James, 2011. Invasive fish species in the largest lakes of Scotland, Northern Ireland, Wales and England: the collective UK experience. Hydrobiologia 660: 93–103.CrossRefGoogle Scholar
  184. Winfield, I. J., J. M. Fletcher & J. B. James, 2012a. Long-term changes in the diet of pike (Esox lucius), the top aquatic predator in a changing Windermere. Freshwater Biology 57: 373–383.CrossRefGoogle Scholar
  185. Winfield, I. J., C. E. Adams, C. W. Bean, N. C. Durie, J. M. Fletcher, A. R. Gowans, C. Harrod, J. B. James, A. A. Lyle, P. S. Maitland, C. Thompson & E. Verspoor, 2012b. Conservation of the vendace (Coregonus albula), the UK’s rarest freshwater fish. Advances in Limnology 63: 547–559.Google Scholar
  186. Wrona, F. J., T. D. Prowse, J. D. Reist, J. E. Hobbie, L. M. J. Levesque & W. F. Vincent, 2006. Climate change effects on aquatic biota, ecosystem structure and function. AMBIO 35: 359–369.PubMedCrossRefGoogle Scholar
  187. Zhao, S., J. Fang, C. Peng, Z. Tang & S. Piao, 2006. Patterns of fish species richness in China’s lakes. Global Ecology and Biogeography 15: 386–394.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Erik Jeppesen
    • 1
    • 2
    • 3
  • Thomas Mehner
    • 4
  • Ian J. Winfield
    • 5
  • Külli Kangur
    • 6
  • Jouko Sarvala
    • 7
  • Daniel Gerdeaux
    • 8
  • Martti Rask
    • 9
  • Hilmar J. Malmquist
    • 10
  • Kerstin Holmgren
    • 11
  • Pietro Volta
    • 12
  • Susana Romo
    • 13
  • Reiner Eckmann
    • 14
  • Alfred Sandström
    • 11
  • Saúl Blanco
    • 13
  • Andu Kangur
    • 6
  • Henrik Ragnarsson Stabo
    • 11
  • Marjo Tarvainen
    • 15
  • Anne-Mari Ventelä
    • 15
  • Martin Søndergaard
    • 1
  • Torben L. Lauridsen
    • 1
    • 3
  • Mariana Meerhoff
    • 1
    • 16
  1. 1.Department of BioscienceAarhus UniversitySilkeborgDenmark
  2. 2.Greenland Climate Research Centre (GCRC)Greenland Institute of Natural ResourcesNuukGreenland
  3. 3.Sino-Danish Centre for Education and ResearchBeijingChina
  4. 4.Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Biology and Ecology of FishesBerlinGermany
  5. 5.Centre for Ecology & HydrologyLancaster Environment CentreBailriggUK
  6. 6.Centre for Limnology at IAESEstonian University of Life SciencesTartuEstonia
  7. 7.Department of BiologyUniversity of TurkuTurkuFinland
  8. 8.INRA, Stn Hydrobiol LacustreThonon Les BainsFrance
  9. 9.Finnish Game and Fisheries Research Institute, Evo Fisheries Research StationEvoFinland
  10. 10.Natural History Museum of KópavogurKópavogurIceland
  11. 11.Department of Aquatic Resources, Institute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
  12. 12.Consiglio Nazionale delle Ricerche, Institute of Ecosystems StudyVerbania PallanzaItaly
  13. 13.Department of Ecology, Faculty of Biology, Campus BurjasotUniversity of ValenciaValenciaSpain
  14. 14.Limnological InstituteUniversity of KonstanzKonstanzGermany
  15. 15.Pyhäjärvi InstituteKauttuaFinland
  16. 16.Departamento de Ecología y Evolución, Centro Universitario Regional Este (CURE), Facultad de CienciasUniversidad de la RepúblicaMaldonadoUruguay

Personalised recommendations