Advertisement

Hydrobiologia

, Volume 698, Issue 1, pp 61–75 | Cite as

Temperature modulated effects of nutrients on phytoplankton changes in a mountain lake

  • Monica TolottiEmail author
  • Hansjörg Thies
  • Ulrike Nickus
  • Roland Psenner
PHYTOPLANKTON

Abstract

Piburger See, a dimictic mountain lake in Austria, experienced moderate cultural eutrophication in the 1950s. Lake restoration led to a re-oligotrophication in the 1990s with a decrease in seasonal phytoplankton biovolume until the late 1990s, but a reversed trend from the early 2000s onwards. We hypothesize that recent changes in phytoplankton biomass and functional structure are triggered by changes in lake nitrogen and silica concentrations, and we expect climate-related factors to modulate the trophic status of Piburger See. Phytoplankton data were analyzed by non-metric multidimensional scaling (NMDS) applied on biovolume of morpho-functional groups, combined with correlation analyses of environmental variables. Since the 2000s, short-term changes in phytoplankton of Piburger See were explained by varying concentrations and ratios of nitrogen and silica, while the inter-annual variability in phytoplankton species composition was rather attributed to superimposed rising water temperature and lake thermal stability. Our results underline the co-dominant role of phosphorus and nitrogen as phytoplankton drivers in lakes that experience periods of nitrogen limitation. The combined impact of nutrients and climate on phytoplankton development can thus mimic short-term increases in the trophic level of less productive lakes.

Keywords

Mountain lakes Phytoplankton Morpho-functional groups Nutrients Climate change Multivariate analysis 

Notes

Acknowledgments

Financial support for this study was provided by the European Commission through the RTD projects CLIME (EVK1-CT-2002-00121) and Euro-limpacs (GOCE-CT-2003-505540), the Austrian Ministry of Science (BMBWK) and the Community of Oetz (Austria). A special thank is due to: Joseph Franzoi, Institute of Ecology, University of Innsbruck, for field work, chemical analyses and chlorophyll determination; Elisabeth Carli and Pamela Analetti for phytoplankton counts and biovolume determination; two anonymous referees for carefully reading the paper and providing thoughtful suggestions.

Supplementary material

10750_2012_1146_MOESM1_ESM.pdf (83 kb)
Supplementary material 1 (PDF 83 kb)

References

  1. Auer, I., R. Böhm, A. Jurkovic, W. Lipa, A. Orlik, R. Potzmann, W. Schöner, M. Ungersböck, C. Matulla, K. Briffa, P. D. Jones, D. Efthymiadis, M. Brunetti, T. Nanni, M. Maugeri, L. Mercalli, O. Mestre, J.-M. Moisselin, M. Begert, G. Müller-Westermeier, V. Kveton, O. Bochnicek, P. Stastny, M. Lapin, S. Szalai, T. Szentimrey, T. Cegnar, M. Dolinar, M. Gajic-Capka, K. Zaninovic, Z. Majstorovic & E. Nieplova, 2007. HISTALP—historical instrumental climatological surface time series of the greater Alpine region 1760-2003. International Journal of Climatology 27: 17–46.CrossRefGoogle Scholar
  2. Bennion, H., R. W. Battarbee, C. D. Sayer, G. L. Simpson & T. A. Davidson, 2011. Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. Journal of Paleolimnology 45: 533–544.CrossRefGoogle Scholar
  3. Bergström, A.-K. & M. Jansson, 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology 12: 1–9.CrossRefGoogle Scholar
  4. Blenckner, T., R. Adrian, D. M. Livingstone, E. Jennings, G. A. Weyhenmeyer, D. G. George, T. Jankowski, M. Jarvinen, C. N. Aonghusa, T. Noges, D. Straile & K. Teubner, 2007. Large-scale climatic signatures in lakes across Europe: a meta-analysis. Global Change Biology 13: 1314–1326.CrossRefGoogle Scholar
  5. Dodds, W. K., K. R. Johnson & J. C. Priscu, 1989. Simultaneous nitrogen and phosphorus deficiency in natural phytoplankton assemblages: theory, empirical evidence and implications for lake management. Lake and Reservoir Management 5: 21–26.CrossRefGoogle Scholar
  6. Dokulil, M. T. & K. Teubner, 2003. Eutrophication and restoration of shallow lakes—the concept of stable equilibria revised. Hydrobiologia 506–509: 29–35.CrossRefGoogle Scholar
  7. Dokulil, M. & K. Teubner, 2011. Eutrophication and climate change: present situation and future scenarios. In Ansari, A. A., S. S. Gill, G. R. Lanza & W. Rast (eds), Eutrophication: Causes Consequences and Control. Springer, Berlin: 1–16.Google Scholar
  8. Elser, J. J., E. R. Marzolf & C. R. Goldman, 1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences 47: 1468–1477.CrossRefGoogle Scholar
  9. Falkowski, P. G. & M. J. Oliver, 2007. Mix and match: how climate selects phytoplankton. Nature Reviews Microbiology 5: 813–819.PubMedCrossRefGoogle Scholar
  10. George, D. G. (ed.), 2010. The Impact of Climate Change on European Lakes. Aquatic Ecology Series, Vol. 4. Springer, Dordrecht: 507 pp.Google Scholar
  11. Huber, V., R. Adrian & D. Gerten, 2008. Phytoplankton response to climate warming modified by trophic state. Limnology and Oceanography 53: 1–13.CrossRefGoogle Scholar
  12. Huisman, J., J. Sharples, J. M. Stroom, P. M. Visser, W. E. A. Kardinaal, J. M. H. Verspagen & B. Sommeijer, 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85: 2960–2970.CrossRefGoogle Scholar
  13. Idso, S. B., 1973. On the concept of lake stability. Limnology and Oceanography 18: 681–683.CrossRefGoogle Scholar
  14. Interlandi, S. J., 2002. Nutrient-toxicant interactions in natural and constructed phytoplankton communities: results of experiments in semi-continuous and batch culture. Aquatic toxicology 61: 35–51.PubMedCrossRefGoogle Scholar
  15. Interlandi, S. J., S. S. Kilham & E. C. Theriot, 1999. Response of phytoplankton to varied resource availability in large lakes of the Greater Yellowstone ecosystem. Limnology and Oceanography 44: 668–682.CrossRefGoogle Scholar
  16. Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophyll a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.Google Scholar
  17. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, K. Kangur, J. Klihler, S. Korner, E. Lammens, T. L. Lauridsen, M. Manea, R. Miracle, B. Moss, P. Noges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willen & M. Winder, 2005. Lake responses to reduced nutrient loading—an analysis of contemporary long term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  18. Jeppesen, E., B. Moss, H. Bennion, L. Carvalho, L. DeMeester, H. Feuchtmayr, N. Friberg, M. O. Gessner, M. Hefting, T. L. Lauridsen, L. Liboriussen, H. Malmquist, L. May, M. Meerhoff, J. S. Olafsson, M. B. Soons & J. T. A. Verhoeven, 2010. Chapter 6 Interaction of climate change and eutrophication. In Kernan, M., R. W. Battarbee & B. Moss (eds), Climate Change Impacts on Freshwater Ecosystems. Wiley, Blackwell: 119–151.CrossRefGoogle Scholar
  19. Kilham, S. S., E. C. Theriot & S. C. Fritz, 1996. Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnology & Oceanography 41: 1052–1062.CrossRefGoogle Scholar
  20. Kruskal, J. B. & M. Wish, 1978. Multidimensional Scaling. Sage Publications, Beverly Hills: 93 pp.Google Scholar
  21. Lanfrancois, B. M., K. R. Nydick & B. Caruso, 2003. Influence of nitrogen on phytoplankton biomass and community composition in fifteen Snowy Range Lakes (Wyoming, U.S.A.). Artic Antarctic and Alpine Research 35: 49–508.Google Scholar
  22. Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd ed. Elsevier, Amsterdam: 300pp.Google Scholar
  23. Lewis, W. M. & W. A. Wurtsbaugh, 2008. Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. International Review of Hydrobiology 93: 446–465.CrossRefGoogle Scholar
  24. Litchman, E., C. A. Klausmeier, J. R. Miller, O. M. Schofield & P. G. Falkowski, 2006. Multi-nutrient, multigroup model of present and future oceanic phytoplankton communities. Biogeosciences 3: 585–606.CrossRefGoogle Scholar
  25. Lotter, A. & C. Bigler, 2000. Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquatic Sciences 62: 125–141.CrossRefGoogle Scholar
  26. Michel, T. J., J. E. Saros, S. J. Interlandi & A. P. Wolfe, 2006. Resource requirements of four freshwater diatom taxa determined by in situ growth bioassays using natural populations from alpine lakes. Hydrobiologia 568: 235–243.CrossRefGoogle Scholar
  27. OECD, 1982. Eutrophication of Waters. Monitoring, Assessment and Control. Organisation for Economic Co-Operation and Development (OECD), Paris: 154 pp.Google Scholar
  28. Padisák, J., E. Soróczki-Pintér & Z. Rezner, 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton—an experimental study. Hydrobiologia 500: 243–257.CrossRefGoogle Scholar
  29. Padisák, J., L. O. Crosetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification. A critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  30. Pechlaner, R. 1968. Beschleunigte Eutrophierung im Piburger See Tirol. Berichte des naturwissenschaflich-medizinischen Vereins Innsbruck 56: 143–161.Google Scholar
  31. Pechlaner, R., 1979. Response of eutrophied Piburger See to reduced external loading and removal of monimolimnic water. Archiv für Hydrobiologie, Beihefte Ergebnisse der Limnologie 13: 293–305.Google Scholar
  32. Pipp, E. & E. Rott, 1995. A phytoplankton compartment model for a small meromictic lake with special reference to species-specific niches and long-term changes. Ecological Modelling 78: 129–148.CrossRefGoogle Scholar
  33. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge: 535 pp.CrossRefGoogle Scholar
  34. Rhee, G.-Y. & I. Gotham, 1980. Optimum N:P ratio and cohexistence in planktonic algae. Journal of Phycology 16: 486–489.CrossRefGoogle Scholar
  35. Rogora, M., R. Mosello, S. Arisci, M. C. Brizzio, A. Barbieri, R. Balestrini, P. Waldner, M. Schmitt, M. Stähli, A. Thimonier, M. Kalina, H. Puxbaum, U. Nickus, E. Ulrich & A. Probst, 2006. An overview of atmospheric deposition chemistry over the Alps: present status and long-term trends. Hydrobiologia 562: 17–40.CrossRefGoogle Scholar
  36. Rohlich, G. A. (ed.), 1969. Eutrophication Causes, Consequences, Correctives. In Proceedings of a Symposium National Academy of Sciences, Washington, DC. ISBN 309-01 700-9.Google Scholar
  37. Rott, E., 1981. Some results from phytoplankton counting intercalibration. Schweizerische Zeitschrift für Hydrobiologie 43: 34–62.Google Scholar
  38. Rott, E., 1983. Sind die Veränderungen im Phytoplanktonbild des Piburger Sees Auswirkungen der Tiefenwasserableitung? Algological Studies 34: 29–80.Google Scholar
  39. Rott, E., 1984. Phytoplankton as biological parameter for the trophic characterization of lakes. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 22: 1078–1085.Google Scholar
  40. Rott, E., 1986. The light climate of a small deep lake (Piburger See, Austria) and its influence on phytoplankton production. Archiv für Hydrobiologie 107: 89–117.Google Scholar
  41. Rühland, K., A. M. Paterson & J. P. Smol, 2008. Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North America and European lakes. Global Change Biology 14: 1–15.Google Scholar
  42. Salmaso, N. & J. Padisák, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.CrossRefGoogle Scholar
  43. Salmi, T., A. Määttä, P. Anttila, T. Ruoho-Airola & T. Amnell, 2002. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann–Kendall Test and Sen’s Slope Estimates—The Excel Template Application MAKESENS. Publications on Air Quality 31. Finnish Meteorological Institute, Helsinki.Google Scholar
  44. Sas, H. (ed.), 1989. Lake Restoration by Reduction of Nutrient Loading. Expectation. Experiences, Extrapolation. Academia Verlag Richarz, St. Augustin: 497.Google Scholar
  45. Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger & C. Appenzeller, 2004. The role of increasing temperature variability in European summer heat waves. Nature 427: 332–336.PubMedCrossRefGoogle Scholar
  46. Schindler, D. W., 1974. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184: 897–899.PubMedCrossRefGoogle Scholar
  47. Schindler, D. W., 2006. Recent advances in the understanding and management of eutrophication. Limnology & Oceanography 51: 356–363.CrossRefGoogle Scholar
  48. Scott, J. T. & M. J. McCarthy, 2010. Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnology & Oceanography 55: 1265–1270.CrossRefGoogle Scholar
  49. Smol, J. P., 2008. Pollution of Lakes and Rivers: A Paleolimnological Perspective, 2nd ed. Blackwell Publishers, Malden, MA: 383 pp.Google Scholar
  50. Teubner, K., M. Tolotti, S. Greisberger, H. Morscheid, M. T. Dokulil & H. Morschied, 2003. Steady state phytoplankton in a deep pre-alpine lake: species and pigments of epilimnetic versus metalimnetic assemblages. Hydrobiologia 502: 49–64.CrossRefGoogle Scholar
  51. Thies, H., M. Tolotti, U. Nickus, A, Lami, S. Musazzi, P. Guilizzoni, N. L. Rose & H. Yang, 2011. Interactions of temperature and nutrient changes: effects on phytoplankton in the Piburger See (Tyrol, Austria). Freshwater Biology, doi:  10.1111/j.1365-2427.2011.02661.x.
  52. Tolotti, M. & H. Thies, 2002. Phytoplankton community and limnochemistry of Piburger See (Tyrol, Austria) 28 years after lake restoration. Journal of Limnology 61: 77–88.CrossRefGoogle Scholar
  53. Tolotti, M., E. Rott, H. Thies & R. Psenner, 2005. Functional species groups of summer phytoplankton in relation to lake restoration: a long-term study of Piburger See, Austria. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 29: 891–894.Google Scholar
  54. Tolotti, M., F. Corradini, A. Boscaini & D. Calliari, 2007. Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578: 147–156.CrossRefGoogle Scholar
  55. Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplanktonmethodik. Mitteilungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 9: 1–38.Google Scholar
  56. Vollenweider, R. A., 1968. Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters, with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication. Technical Report. OECD, Paris.Google Scholar
  57. Wagner, C. & R. Adrian, 2009. Cyanobacteria dominance: quantifying the effects of climate change. Limnology & Oceanography 54: 2460–2468.CrossRefGoogle Scholar
  58. Wetzel, R. G., 2001. Limnology. Lake and River Ecosystems, 3rd ed. Academic Press, San Diego: 1006 pp.Google Scholar
  59. Wilkinson, L., 1990. SYSTAT: The System for Statistics. SYSTAT, Evanston: 677 pp.Google Scholar
  60. Winder, M., J. E. Reuter & S. G. Schladow, 2009. Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society B 276: 427–435.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Monica Tolotti
    • 1
    Email author
  • Hansjörg Thies
    • 2
  • Ulrike Nickus
    • 3
  • Roland Psenner
    • 2
  1. 1.IASMA Research and Innovation CentreE. Mach FoundationS. Michele all’AdigeItaly
  2. 2.Institute of EcologyUniversity of InnsbruckInnsbruckAustria
  3. 3.Institute of Meteorology and GeophysicsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations