Advertisement

Hydrobiologia

, Volume 694, Issue 1, pp 99–116 | Cite as

Young-of-the-year fish assemblages as indicators of anthropogenic disturbances in large tributaries of the Seine River Basin (France)

  • J. LeclereEmail author
  • J. Belliard
  • T. OberdorffEmail author
Primary Research Paper

Abstract

A variety of indices targeting a number of different biological assemblages have been developed to assess aquatic ecosystem condition, identify the drivers of alteration and provide information on possible restoration measures. Fish-based indices, commonly focused on adult assemblages, are capable of indicating declines in condition, but often provide limited information on the ultimate causes for the observed changes. Using young-of-the-year (YOY) fish assemblages has been suggested as a means of improving the sensitivity of fish-based indicators. To verify this assumption, we first model, using boosted regression trees, the occurrence of 16 YOY fish species as a function of twenty two environmental factors in 227 reference (i.e., least disturbed) habitats located in the river Seine (France) and its two main tributaries (i.e., Oise and Marne rivers). We then validate the species models using an independent dataset of 74 reference habitats. Finally, using three independent data sets reflecting different categories of disturbances (i.e., physico-chemical disturbances, physical disturbances induced by navigation and a mix of both disturbances), we measure the deviation between expected and observed species occurrences to evaluate our species models ability in detecting these disturbances. The models are ecologically meaningful and overall perform well in discriminating between reference and disturbed habitats, showing a stable response for all unimpaired habitats and highlighting the main habitat disturbances tested.

Keywords

Young-of-the-year fishes Large rivers Predictive models Anthropogenic disturbances Machine learning 

Notes

Acknowledgments

This work was supported by the “National Association for Research and Technology” (ANRT), the “Hydrosphere Company (CIFRE Contract No. 383/2008), and “Voies Navigables de France” (VNF). We greatly acknowledge helpful comments made by N. Bond and three anonymous referees on a previous version of this manuscript. We thank all hydrosphere Company’s employees for their very helpful participation during fishing campaigns and especially Pascal Michel (Hydrosphere director), the project designer. We also thank Fabien Leprieur for statistical advices.

References

  1. Adam, P., N. Debiais & J. R. Malavoi, 2007. Manuel de restauration hydromorphologique des cours d’eau. Agence de l’eau Seine-Normandie, Nanterre.Google Scholar
  2. Arlinghaus, R., C. Engelhardt, A. Sukhodolov & C. Wolter, 2002. Fish recruitment in a canal with intensive navigation: implications for ecosystem management. Journal of Fish Biology 61: 1386–1402.CrossRefGoogle Scholar
  3. Balon, E. K., 1975. Reproductive guilds of fishes: a proposal and definition. Journal of the Fisheries Board of Canada 32: 821–864.CrossRefGoogle Scholar
  4. Baras, E., J. Nindaba & J. C. Philippart, 1995. Microhabitats use in a 0+ rheophilous cyprinid assemblage: quantitative assessment of community structure and fish density. Bulletin français de la pêche et de la pisciculture 337/338/339: 241–247.CrossRefGoogle Scholar
  5. Belliard, J., P. Boet & E. Tales, 1997. Regional and longitudinal patterns of fish community structure in the Seine River basin, France. Environmental Biology of Fishes 50: 133–147.CrossRefGoogle Scholar
  6. Cattaneo, F., 2005. Does hydrology constrain the structure of fish assemblages in French streams? Locale scale analysis. Archiv fur Hydrobiologie 164: 345–365.CrossRefGoogle Scholar
  7. Copp, G. H., 1987. Le rôle et le fonctionnement des milieux aquatiques du Haut-Rhône français comme sites de reproduction et de nurserie pour les poissons du fleuve. Thèse de doctorat, Université Lyon I.Google Scholar
  8. Copp, G. H., 1992a. An empirical model for predicting microhabitat of 0+ juvenile fishes in a lowland river catchment. Oecologia 91: 338–345.CrossRefGoogle Scholar
  9. Copp, G. H., 1992b. Comparative microhabitat use of cyprinid larvae and juveniles in a lotic floodplain channel. Environmental Biology of Fishes 33: 181–193.CrossRefGoogle Scholar
  10. Copp, G. H. & H. Penáz, 1988. Ecology of fish spawning and nursery zones in the floodplain, using a new sampling approach. Hydrobiologia 169: 209–224.CrossRefGoogle Scholar
  11. Copp, G. H., J. M. Oliver, M. Penaz & A. L. Roux, 1991. Juvenile fishes as functional describers of fluvial ecosystem dynamics: applications on the river Rhône, France. Regulated rivers: Research and Management 6: 135–145.CrossRefGoogle Scholar
  12. De Bruyn, A. M. H., D. J. Marcogliese & J. B. Rasmussen, 2003. The role of sewage in a large river food web. Canadian Journal of Fisheries and Aquatic Sciences 60: 1332–1344.CrossRefGoogle Scholar
  13. De Leeuw, J. J., A. D. Buijse, M. Lapinska, R. Noble, R. Pepecka, T. Virbickas, W. Wisniewolski & C. Wolter, 2007. Challenges in developing fish-based ecological assessment methods for large floodplain rivers. Fisheries Management and Ecology 14: 483–494.CrossRefGoogle Scholar
  14. De’ath, G., 2007. Boosted trees for ecological modeling and prediction. Ecology 88: 243–251.PubMedCrossRefGoogle Scholar
  15. Elith, J., C. H. Graham, R. P. Anderson, M. Dudý′k, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. Mc C Overton, A. T. Peterson, S. J. Phillips, K. S. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Sobero′n, S. Williams, M. S. Wisz & N. E. Zimmermann, 2006. Novel methods improve prediction of species distributions from occurrence data. Ecography 29: 129–151.CrossRefGoogle Scholar
  16. Elith, J., J. R. Leathwick & T. Hastie, 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–813.PubMedCrossRefGoogle Scholar
  17. Garner, P., 1996. Habitat use by 0+ cyprinid fish in the river Great Ouse, East Anglia. Journal of Fish Biology 48: 367–382.CrossRefGoogle Scholar
  18. Gozlan, R. E., S. Mastrorillo, F. Dauda, J. N. Tourenq & G. H. Copp, 1998. Multi-scale analysis of habitat use during late summer for 0+ fishes in the River Garonne (France). Aquatic Sciences 60: 99–117.CrossRefGoogle Scholar
  19. Grift, R. E., A. D. Buijse, W. L. T. Van Densen, M. A. M. Machiels, J. Kranenbarg, J. G. P. Klein Breteler & J. J. G. M. Backx, 2003. Suitable habitats for 0‐group fish in rehabilitated floodplains along the lower River Rhine. River Research and Applications 19: 353–374.CrossRefGoogle Scholar
  20. Heino, J., 2011. A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biology 56: 1703–1722.CrossRefGoogle Scholar
  21. Hering, D., A. Borja, J. Carstensen, L. Carvalho, M. Elliott, C. K. Fled, A.-S. Heiskanen, R. K. Johnson, J. Moe, D. Pont, A. L. Solheim & W. Van de Bund, 2010. The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Science of Total Environment 408: 4007–4019.CrossRefGoogle Scholar
  22. Huckstorf, V., W. C. Lewin & C. Mehner, 2010. Impoverishment of YOY-fish assemblages by intense commercial navigation in a large Lowland river. River Research and Applications. doi: 10.1002/rra.1420.
  23. Humphries, P., G. S. Luciano & A. J. King, 2002. River regulation and fish larvae: variation through space and time. Freshwater Biology 47: 1307–1331.CrossRefGoogle Scholar
  24. Jurajda, P., O. Slavik, S. White & Z. Adamek, 2010. Young-of-the-year fish assemblages as an alternative to adult fish monitoring for ecological quality evaluation of running waters. Hydrobiologia 644: 89–111.CrossRefGoogle Scholar
  25. Koblickaja, A. P., 1981. Key for Identifying Young Freshwater Fishes. Light and Food Industrial Publishing House, Moscow.Google Scholar
  26. Kucera-Hirzinger, V., E. Schludermann, H. Zornig, A. Weissenbacher, M. Schabuss & F. Schiemer, 2009. Potential effects of navigation-induced wave wash on the early life history stages of riverine fish. Aquatic Sciences 71: 94–102.CrossRefGoogle Scholar
  27. Leathwick, J. R., J. Elith, M. P. Francis, T. Hastie & P. Taylor, 2006. Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology Progress Series 321: 267–281.CrossRefGoogle Scholar
  28. Leclere, J., T. Oberdorff, J. Belliard & F. Leprieur, 2011. A comparison of modeling techniques to predict juvenile 0+ fish species occurrences in a large river system. Ecological Informatics 6: 276–285.CrossRefGoogle Scholar
  29. Malavoi, J. R. & Y. Souchon, 2002. Description standardisée des principaux faciès d’écoulement observables en rivière: clé de détermination qualitative et mesures physiques. Bulletin Français de la Pêche et de la Pisciculture 365(366): 357–372.CrossRefGoogle Scholar
  30. Mann, R. H. K., 1996. Environmental requirements of European non-salmonid fish in rivers. Hydrobiologia 323: 223–235.CrossRefGoogle Scholar
  31. Matthews, W. J., 1998. Patterns in Freshwater Fish Ecology. Chapman & Hall, New York.CrossRefGoogle Scholar
  32. Mazumder, B. S., N. G. Bhowmik & T. W. Soong, 1993. Turbulence in rivers due to navigation traffic. Journal of Hydraulic engineering 119: 581–597.CrossRefGoogle Scholar
  33. MEDDAT, 2009. Guide technique actualisant les règles d’évaluation de l’état des eaux douces de surface de métropole.Google Scholar
  34. Moisen, G. G., E. A. Freeman, J. A. Blackard, T. S. Frescino, N. E. Zimmermann & T. C. Edwards, 2006. Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecological Modelling 199: 176–187.CrossRefGoogle Scholar
  35. Nelva, A., H. Persat & D. Chessel, 1979. Une nouvelle méthode d’étude des peuplements ichtyologiques dans les grands cours d’eau par échantillonnage ponctuel d’abondance. Comptes rendus Academie des Sciences Paris 289: 1295–1298.Google Scholar
  36. Oberdorff, T., E. Guilbert & J. C. Lucchetta, 1993. Patterns of fish species richness in the Seine River basin, France. Hydrobiologia 259: 157–167.CrossRefGoogle Scholar
  37. Oberdorff, T., D. Pont, B. Hugueny & D. Chessel, 2001. A probabilistic model characterizing fish assemblages of French rivers: a framework for environmental assessment. Freshwater Biology 46: 399–415.CrossRefGoogle Scholar
  38. Oberdorff, T., D. Pont, B. Hugueny & J. P. Porcher, 2002. Development and validation of a fish-based index (FBI) for the assessment of rivers “health” in France. Freshwater Biology 47: 1720–1735.CrossRefGoogle Scholar
  39. Olden, J. D. & D. A. Jackson, 2002. A comparison of statistical approaches for modelling fish species distributions. Freshwater Biology 47: 1976–1995.CrossRefGoogle Scholar
  40. Pander, J. & J. Geist, 2010. Seasonal and spatial bank habitat use by fish in highly altered rivers: a comparison of four different restoration measures. Ecology of Freshwater Fish 19: 127–138.CrossRefGoogle Scholar
  41. Persat, H. & G. H. Copp, 1989. Electrofishing and point abundance sampling for the ichthyology of large river. In Cowx, I. J. (ed.), Developments in Electric Fishing. Fishing New Books, Cambridge: 197–209.Google Scholar
  42. Philippart, J. C. & M. Wranken, 1993. Atlas des poisons de Wallonie. Distribution, écologie éthologie, pêche, conservation. Cahiers d’éthologie Appliquée 3. Université de Liège, Liege.Google Scholar
  43. Poizat, G. & D. Pont, 1996. Multi-scale approach to species habitat relationships: juvenile fish in a large river section. Freshwater Biology 36: 611–622.CrossRefGoogle Scholar
  44. Pont, D., B. Hugueny & T. Oberdorff, 2005. Modelling habitat requirement of European fishes: do fishes have similar responses to local and regional environmental constraints? Canadian Journal of Aquatic Sciences 62: 163–173.CrossRefGoogle Scholar
  45. Pont, D., B. Hugueny, B. Beier, D. Goffaux, A. Melcher, R. Noble, C. Rogers, N. Roset & S. Schmutz, 2006. Assessing river biotic condition at the continental scale: a European approach using functional metrics and fish assemblages. Journal of Applied Ecology 43: 70–80.CrossRefGoogle Scholar
  46. Pouilly, M., 1994. Relations entre l’habitat physique et les poisons des zones à cyprinidés rhéophiles dans trois cours d’eau du bassin rhodanien: vers une simulation de la capacité d’accueil pour les peuplements. Thèse de doctorat. Université Lyon I/CEMAGREF, Lyon.Google Scholar
  47. R Core and Development Team, 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  48. Ridgeway, G., 2006. Gbm: Generalized Boosted Regression Models. R package.Google Scholar
  49. Roche, P. A., G. Billen, J. P. Bravard, H. Décamps, D. Pennequin, E. Vindimian & J. G. Wasson, 2005. Les enjeux de recherches liés à la directive cadre sur l’eau. Comptes Rendus Geoscience 337: 243–267.CrossRefGoogle Scholar
  50. Rogers, C. & D. Pont, 2005. Création de base de données thermiques devant servir au calcul de l’Indice Poisson normalisé. Université de Lyon I-CSP.Google Scholar
  51. Roset, N., G. Grenouillet, D. Goffaux, D. Pont & P. Kestemont, 2007. A review of existing fish assemblage indicators and methodologies. Fisheries Management and Ecology 14: 393–405.CrossRefGoogle Scholar
  52. Schapire, R., 2003. The boosting approach to machine learning: an overview. In Denison, D. D., M. H. Hansen, C. Holmes, B. Mallick & B. Yu (eds), MSRI Workshop on Nonlinear Estimation and Classification, 2002. Springer, New York.Google Scholar
  53. Schiemer, F. & H. Waidbecher, 1992. Strategies for conservation of a Danubian fish fauna. In Bonn, P. J., P. Calow & G. E. Petts (eds), River Conservation and Management. Wiley, New York: 363–382.Google Scholar
  54. Schmutz, S., M. Kaufmann, B. Vogel, M. Jungwirth & S. Muhar, 2000. A multi-level concept for fish-based, river type specific assessment of ecological integrity. Hydrobiologia 422(423): 279–289.CrossRefGoogle Scholar
  55. Schmutz, S., I. G. Cwx, G. Haidvogl & D. Pont, 2007a. Fish-based methods for assessing European running waters: a synthesis. Fisheries Management and Ecology 14: 369–380.CrossRefGoogle Scholar
  56. Schmutz, S., A. Melcher, C. Frangez, G. Haidvogl, U. Beier, J. Bôhmer, J. Breine, I. Simoens, N. Caiola, A. de Sostoa, M. T. Ferreira, J. Oliviera, G. Grenouillet, D. Goffaux, J. J. De Leeuw, R. A. A. Noble, N. Roset & T. Virbickas, 2007b. Spatially based methods to assess the ecological status of riverine fish assemblages in European ecoregions. Fisheries management and Ecology 14: 441–452.CrossRefGoogle Scholar
  57. Spillmann, C. J., 1961. Poissons d’eau douce. Faune de France. Editions Paul Lechevalier, Paris.Google Scholar
  58. Stakenas, S., 1999. Ecological characteristics of 0 +fish communities in the shore-zones of the middle Nemunas and the Neris rivers. Acta Zoologica Lituanica 9: 155–163.Google Scholar
  59. Tejerina-Garro, F. L., M. Maldonado, C. Ibanez, D. Pont, N. Roset & T. Oberdorff, 2005. Effects of natural and anthropogenic environmental changes on riverine fish assemblages: a framework for ecological assessment of rivers. Brazilian Archives of Biology and Technology 48: 91–108.CrossRefGoogle Scholar
  60. Verneaux, J., 1981. Les poissons et la qualité des cours d’eau. Annales Scientifiques de l’université de Franche-Comté 2: 33–41.Google Scholar
  61. Water Framework Directive, 2000. Directive 200/06/EC of the European parliament and the council of 23 October 200 establishing a framework for community action in the field of water policy. Official journal of the European Communities L327: 1–72.Google Scholar
  62. Wolter, C. & R. Arlinghaus, 2003. Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Reviews in Fish Biology and Fisheries 13: 63–89.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.HYDROSPHERESaint Ouen l’AumôneFrance
  2. 2.UMR CNRS 5178-IRD 207-MNHN-UPMC «Biologie des Organismes et Écosystèmes Aquatiques» DMPAMuseum National d’Histoire NaturelleParisFrance
  3. 3.UR «Hydrosystèmes et bioprocédés», IRSTEA (Cemagref)AntonyFrance

Personalised recommendations