Hydrobiologia

, Volume 694, Issue 1, pp 87–98 | Cite as

Evidence of elevated mercury levels in carnivorous and omnivorous fishes downstream from an Amazon reservoir

  • Daniele Kasper
  • Elisabete Fernandes Albuquerque Palermo
  • Christina Wyss Castelo Branco
  • Olaf Malm
Primary Research Paper

Abstract

Hydroelectric reservoirs can stratify, producing favorable conditions for mercury methylation in the hypolimnion. The methylmercury (MeHg) can be exported downstream, increasing its bioavailability below the dam. Our objective was to assess the mercury levels in plankton, suspended particulate matter (SPM) and fish collected upstream (UP) and downstream (DW) from the Reservatório de Samuel dam, an Amazonian reservoir that stratifies during half of the year. Mercury concentrations in both SPM and plankton were similar between the two sites, which could indicate there are no conditions favoring methylation at the moment of sampling (absence of stratification). Almost all mercury found in the muscle of fishes was in organic form, and differences of mercury levels between sites were dependent on the fishes trophic level. Herbivores showed similar mean organic mercury levels (UP = 117 μg g−1; DW = 120 μg g−1; n = 12), whereas omnivores (UP = 142 μg g−1; DW = 534 μg g−1; n = 27) and carnivores (UP = 545 μg g−1; DW = 1,366 μg g−1; n = 69) showed significantly higher values below the dam. The absence of a reservoir effect in herbivores is expected, since they feed on grassy vegetation, near the riverbanks, which is not much influenced by mercury in aquatic systems. On the other hand, the higher mercury levels below the dam observed for omnivores and carnivores suggest a possible influence of the reservoir since they feed on items that could be contaminated by MeHg exported from upstream. The results highlight the necessity of assessing areas downstream of reservoirs.

Keywords

Bioaccumulation Fish tissues Hydroelectric Organic mercury Methylation 

References

  1. Anderson, M. R., 2011. Duration and extent of elevated mercury levels in downstream fish following reservoir creation. River Systems 19(3): 167–176.CrossRefGoogle Scholar
  2. Bastos, W. R., O. Malm, W. C. Pfeiffer & D. Cleary, 1998. Establishment and analytical quality control of laboratories for Hg determination in biological and geological samples in the Amazon, Brazil. Ciência e Cultura 50: 255–260.Google Scholar
  3. Bastos, W. R., J. P. O. Gomes, R. C. Oliveira, R. Almeida, E. L. Nascimento, J. V. E. Bernardi, L. D. Lacerda, E. G. Silveira & W. C. Pfeiffer, 2006. Mercury in the environment and riverside population in the Madeira River Basin, Amazon, Brazil. Science of the Total Environment 368: 344–351.PubMedCrossRefGoogle Scholar
  4. Bermann, C., 2002. Energia no Brasil: para quê? Para quem? Crise e alternativas para um país sustentável. Livraria da Física, São Paulo.Google Scholar
  5. Bodaly, R. A. D., W. A. Jansen, A. R. Majewski, R. J. P. Fudge, N. E. Strange, A. J. Derksen & D. J. Green, 2007. Postimpoundment time course of increased mercury concentrations in fish in hydroelectric reservoirs of northern Manitoba, Canada. Archives of Environmental Contamination and Toxicology 53: 379–389.PubMedCrossRefGoogle Scholar
  6. Boudou, A. & F. Ribeyre, 1997. Mercury in the food web: accumulation and transfer mechanisms. In Sigel, A. & H. Sigel (eds), Metallons in Biological Systems—Mercury and Its Effects on Environment and Biology. Marcel Dekker, New York: 289–320.Google Scholar
  7. Branco, C. W. C., T. Aguiaro, F. A. Esteves & E. P. Caramaschi, 1997. Food sources of the Teleost Eucinostomus argenteus in two coastal lagoons of Brazil. Studies on Neotropical Fauna and Environment 32: 33–40.CrossRefGoogle Scholar
  8. Canavan, C. M., C. A. Caldwell & N. S. Bloom, 2000. Discharge of methylmercury enriched hypolimnetic water from a stratified reservoir. Science of the Total Environment 260: 159–170.PubMedCrossRefGoogle Scholar
  9. Dominique, Y., R. Maury-Brachet, B. Muresan, R. Vigouroux, S. Richard, D. Cossa, A. Mariotti & A. Boudou, 2007. Biofilm and mercury availability as key factors for mercury accumulation in fish (Curimata cyprinoids) from a disturbed Amazonian freshwater system. Environmental Toxicology and Chemistry 26: 45–52.PubMedCrossRefGoogle Scholar
  10. Dorea, J. G., 2004. Cassava cyanogens and fish mercury are high but safely consumed in the diet of native Amazonians. Ecotoxicology and Environmental Safety 57: 248–256.PubMedCrossRefGoogle Scholar
  11. Du, X., Y. G. Zhu, W. J. Liu & X. S. Zhao, 2005. Uptake of Mercury (Hg) by seedlings of Rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. Environmental and Experimental Botany 54: 1–7.CrossRefGoogle Scholar
  12. FAO/WHO, 1991. Codex Alimentarius: Guideline Levels for Mercury in Fish (CAC/GL 7-1991). Taked by the Commission at its Nineteenth Session in Italy 1–10 July 1991.Google Scholar
  13. FAO/WHO, 2006. Summary and Conclusions of the Sixty-Seventh Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in Rome 20–29 June 2006.Google Scholar
  14. Fishe, N. S. & S. E. Hook, 2002. Toxicology tests with aquatic animals needs to consider the trophic transfer of metals. Toxicology 181: 531–536.CrossRefGoogle Scholar
  15. Gantzer, P. A., L. D. Bryant & J. C. Little, 2009. Controlling soluble iron and manganese in a water-supply reservoir using hypolimnetic oxygenation. Water Research 43: 1285–1294.PubMedCrossRefGoogle Scholar
  16. Goulding, M., 1980. The Fishes and the Forest: Explorations in Amazonian Natural History. University of California Press, Los Angeles.Google Scholar
  17. Huchabee, J. W., J. W. Elwood & S. C. Hildebrand, 1979. Accumulation of mercury in freshwater biota. In Nriagu, J. O. (ed.), The Biogeochemistry of Mercury in the Environment. Elsevier, Amsterdam: 277–302.Google Scholar
  18. Hylander, L. D., J. Gröhn, M. Tropp, A. Vikström, H. Wolpher, E. C. Silva, M. Meili & L. J. Oliveira, 2006. Fish mercury increase in Lago Manso, a new hydroelectric reservoir in tropical Brazil. Journal of Environmental Management 81: 155–166.PubMedCrossRefGoogle Scholar
  19. Hyslop, E. J., 1980. Stomach content analysis—a review of methods and their application. Journal of Fish Biology 17: 411–429.CrossRefGoogle Scholar
  20. Ikingura, J. R. & H. Akagi, 2003. Total mercury and methylmercury levels in fish from hydroelectric reservoirs in Tanzania. Science of the Total Environment 304: 355–368.PubMedCrossRefGoogle Scholar
  21. Jahanbakht, S., F. Livardjani & A. Jaeger, 2002. An experimental ecotoxicological study and its application to the behavioural study of organic mercury (CH3HgCl) in the environment: influence of temperature and pH. Chemosphere 49: 1399–1405.PubMedCrossRefGoogle Scholar
  22. Kamman, N. C., N. M. Burgess, C. T. Driscoll, H. A. Simonin, W. Goodale, J. Linehan, R. Estabrook, M. Hutcheson, A. Major, A. M. Scheuhammer & D. A. Scruton, 2005. Mercury in freshwater fish of Northeast North America—a geographic perspective based on fish tissue monitoring databases. Ecotoxicology 14: 163–180.PubMedCrossRefGoogle Scholar
  23. Kasper, D., E. F. A. Palermo, A. C. M. I. Dias, G. L. Ferreira, R. P. Leitão, C. W. C. Branco & O. Malm, 2009. Mercury distribution in different tissues and trophic levels of fish from a tropical reservoir, Brazil. Neotropical Ichthyology 7: 751–758.CrossRefGoogle Scholar
  24. Kehrig, H. A., T. G. Seixas, E. F. A. Palermo, A. P. M. Di Beneditto, C. M. M. Souza & O. Malm, 2008. Different species of mercury in the livers of tropical dolphins. Analytical Letters 41: 1691–1699.CrossRefGoogle Scholar
  25. Lindqvist, O., K. Johnasson, M. Aastrup, A. Andersson, L. Bringmark, G. Hovsenius, A. Hakanson, M. Meili & B. Timm, 1991. Mercury in the Swedish environment-recent research on causes, consequences and corrective methods. Water, Air and Soil Pollution 55: 1–251.CrossRefGoogle Scholar
  26. Lucotte, M., R. Schetagne, N. Thérien, C. Langlois & A. Tremblay, 1999. Mercury in the Biogeochemical Cycle: Natural Environments and Hydroelectric Reservoirs of Northern Québec. Springer, Berlin.Google Scholar
  27. Malm, O., E. F. A. Palermo, H. S. B. Santos, M. F. Rebelo, H. A. Kehrig, R. B. Oliveira, R. O. Meire, F. N. Pinto, L. P. A. Moreira, J. R. D. Guimarães, J. P. M. Torres & W. C. Pfeiffer, 2004. Transport and cycling of mercury in Tucuruí reservoir, Amazon, Brazil: 20 years after fulfillment. RMZ Materials and Geoenvironment 51: 1195–1198.Google Scholar
  28. Meng, B., X. Feng, G. Qiu, Y. Cai, D. Wang, P. Li, L. Shang & J. Sommar, 2010. Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. Journal of Agricultural and Food Chemistry 58: 4951–4958.PubMedCrossRefGoogle Scholar
  29. Miller, J. C. & J. N. Miller, 1994. Statistics for Analytical Chemistry. Ellis Horwood, Great Britain.Google Scholar
  30. Muresan, B., D. Cossa, S. Richard & Y. Dominique, 2008. Monomethylmercury sources in a tropical artificial reservoir. Applied Geochemistry 23: 1101–1126.CrossRefGoogle Scholar
  31. Nascimento, E. L., 2006. Concentração de mercúrio no plâncton e fatores ecológicos no Reservatório da UHE—Samuel—Amazônia ocidental (Rondônia/Brasil). Dissertation, Universidade Federal de Rondônia.Google Scholar
  32. Nascimento, E. L., J. P. O. Gomes, D. P. Carvalho, R. Almeida, W. R. Bastos & K. R. Miyai, 2009. Mercúrio na comunidade planctônica do reservatório da Usina Hidrelétrica de Samuel (RO), Amazônia Ocidental. Geochimica Brasiliensis 23: 101–116.Google Scholar
  33. Palermo, E. F. A., D. Kasper, T. S. Reis, S. Nogueira, C. W. C. Branco & O. Malm, 2004. Mercury level increase in fish tissues downstream the Tucuruí Reservoir, Brazil. RMZ Material and Geoenvironment 51: 1292–1294.Google Scholar
  34. Porvari, P., 1995. Mercury levels of fish in Tucuruí hydroelectric reservoir and in River Mojú in Amazonia, in the state of Pará, Brazil. Science of the Total Environment 175: 109–117.CrossRefGoogle Scholar
  35. REN21, 2009. Renewables Global Status Report: Update. GTZ, Paris.Google Scholar
  36. Rogers, D. W., M. Dickman & X. Han, 1995. Stories from old reservoirs: sediment Hg and Hg methylation in Ontario hydroelectric developments. Water, Air and Soil Pollution 80: 829–839.CrossRefGoogle Scholar
  37. Santos, G. M., 1995. Impactos da hidrelétrica Samuel sobre as comunidades de peixes do rio Jamari (Rondônia, Brasil). Acta Amazônica 25: 247–280.Google Scholar
  38. Santos, G. M., M. Jégu & B. Merona, 1984. Catálogo de peixes comerciais do baixo Rio Tocantins. Eletronorte/INPA/CNPq, Manaus.Google Scholar
  39. Santos, G. M., E. Ferreira & J. A. S. Zuanon, 2006. Peixes comerciais de Manaus. ProVárzea/IBAMA, Manaus.Google Scholar
  40. Schetagne, R., J. F. Doyon & J. J. Fournier, 2000. Export of mercury downstream from reservoirs. Science of the Total Environment 260: 135–145.PubMedCrossRefGoogle Scholar
  41. SEDAM, 2002. Atlas Geoambiental de Rondônia. SEDAM, Porto Velho.Google Scholar
  42. Sierra, M. J., R. Millán & E. Esteban, 2009. Mercury uptake and distribution in Lavandula stoechas plants grown in soil from Almadén mining district (Spain). Food and Chemical Toxicology 47: 2761–2767.PubMedCrossRefGoogle Scholar
  43. Silva-Forsberg, M. C., B. R. Forsberg & V. K. Zeidemann, 1999. Mercury contamination in humans linked to river chemistry in the Amazon Basin. Ambio 28: 519–521.Google Scholar
  44. Simon, O. & A. Boudou, 2001. Direct and trophic contamination of the herbivorous carp Ctenopharyngodon idella by inorganic mercury and methylmercury. Ecotoxicology and Environmental Safety 50: 48–59.PubMedCrossRefGoogle Scholar
  45. St. Louis, V. L., J. W. M. Rudd, C. A. Kelly, R. A. D. Bodaly, M. J. Paterson, K. G. Beaty, R. H. Hesslein, A. Heyes & A. R. Majewski, 2004. The rise and fall of mercury methylation in an experimental reservoir. Environmental Science and Technology 38: 1348–1358.PubMedCrossRefGoogle Scholar
  46. Stamenkovic, J. & M. S. Gustin, 2009. Nonstomatal versus stomatal uptake of atmospheric mercury. Environmental Science and Technology 43: 1367–1372.PubMedCrossRefGoogle Scholar
  47. Tuomola, L., T. Niklasson, E. C. Silva & L. D. Hylander, 2008. Fish mercury development in relation to abiotic characteristics and carbon sources in a six-year old, Brazilian reservoir. Science of the Total Environment 390: 177–187.PubMedCrossRefGoogle Scholar
  48. Vazzoler, A. E. A. M., 1996. Biologia da reprodução de peixes teleósteos: teoria e prática. EDUEM/SBI, Maringá/São Paulo.Google Scholar
  49. Viana, J. P., 2002. Physical and chemical post-dam alteration in the Jamari River, a hydroelectric-developed river of the Brazilian Amazon. Hydrobiologia 472: 235–247.CrossRefGoogle Scholar
  50. Wiener, J. G., D. P. Krabbenhoft, G. H. Heinz & A. M. Scheuhammer, 2002. Ecotoxicology of mercury. In Hoffman, J., B. A. Rattner, G. A. Burton & J. Cairns (eds), Handbook of Ecotoxicology. CRC, Boca Raton: 409–463.Google Scholar
  51. Window, H. L. & D. R. Kendall, 1979. Accumulation and biotransformation of mercury. In Nriagu, J. O. (ed.), The Biogeochemistry of Mercury in the Environment. Elsevier/North Holland Biomedical Press, Amsterdam: 303–323.Google Scholar
  52. Zhang, H., X. Feng, T. Larssen, L. Shang & P. Li, 2010. Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain. Environmental Science and Technology 44: 4499–4504.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Daniele Kasper
    • 1
  • Elisabete Fernandes Albuquerque Palermo
    • 2
  • Christina Wyss Castelo Branco
    • 3
  • Olaf Malm
    • 1
  1. 1.Laboratório de Radioisótopos Eduardo Penna FrancaInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Ilha do FundãoRio de JaneiroBrazil
  2. 2.Laboratório de Química AmbientalUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroBrazil
  3. 3.Núcleo de Estudos LimnológicosUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroBrazil

Personalised recommendations