, Volume 693, Issue 1, pp 223–235 | Cite as

Holocene environmental change at Lake Shudu, Yunnan Province, southwestern China

  • Richard T. Jones
  • Charlotte G. Cook
  • Enlou Zhang
  • Peter G. Langdon
  • Jason Jordan
  • Chris Turney
Primary Research Paper


A Holocene palaeorecord from Lake Shudu, Yunnan Province, southwestern China is dominated by (1) a pronounced basin-wide sedimentary hiatus after ca. 7.2 kcal yr BP, spanning some 4,000 years and (2) significant changes in sediment source/supply and an increase in heavy metal influx coupled with a shift to more eutrophic lake conditions from ca. 0.9 kcal yr BP, lasting ~300 years. The hiatus is most likely a due to a significant and abrupt reduction in sedimentation rates, the driver of which is unclear; although it appears likely to have been climatically driven. The environmental changes captured in the Lake Shudu palaeorecord provide unambiguous evidence of late Holocene anthropogenic activity, most likely linked to mining activity.


Holocene Southwestern China Asian monsoon Lake sediments Past climate change 



We would like to thank the following people/organisations for their help to complete this research project; The Royal Society, the Chinese Academy of Sciences, Professor Shen Ji and the Australian Research Council (grant FL100100195) for research funding and support; Alistair Lovell, Jessica Jordan and Kim Deal for technical support; the drawing office at Exeter University and Alan Hogg and staff at the University of Waikato for AMS 14C radiocarbon dating support. The manuscript was greatly improved by the useful comments of the referees.


  1. Barber, H., & E. Y. Haworth., 1981. A Guide to the Morphology of the Diatom Frustule, with a Key to the British Freshwater Genera, Ambleside. Freshwater Biological Association.Google Scholar
  2. Bengtsson, L. & M. Enell, 1986. Chemical analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester: 423–451.Google Scholar
  3. Berger, A. & M. F. Loutre, 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10: 297–317.CrossRefGoogle Scholar
  4. Beug, H. J., 2004. Leitfaden der Pollenbestimmung. Dr Friedrich Pfeil, Munchen.Google Scholar
  5. Bond, G., W. Broecker, S. Johnsen, J. McManus, L. Labeyrie, J. Jouzel & G. Bonani, 1993. Correlations between climate records from north Atlantic sediments and Greenland ice. Nature 365: 143–147.CrossRefGoogle Scholar
  6. Bond, G., B. Kromer, J. Beer, R. Muscheler, M. N. Evans, W. Showers, S. Hoffman, R. Lotti-Bond, I. Hajdas & G. Bonani, 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294: 2130–2136.PubMedCrossRefGoogle Scholar
  7. Boyle, J. F., 2001. Inorganic geochemical methods in palaeolimnology. In Last, M. & J. Smol (eds), Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods. Kluwer, Dordrecht: 83–141.Google Scholar
  8. Bronk Ramsey, C., 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37: 425–430.Google Scholar
  9. Bronk Ramsey, C., 2008. Deposition models for chronological records. Quaternary Science Reviews 27: 42–60.CrossRefGoogle Scholar
  10. Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337–360.Google Scholar
  11. Brooks, S. J., P. G. Langdon & O. Heiri, 2007. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. Quaternary Research Association, London.Google Scholar
  12. Chase, B. M., M. E. Meadows, A. S. Carr & P. J. Reimer, 2010. Evidence for progressive Holocene aridification in southern Africa recorded in Namibian hyrax middens: implications for African Monsoon dynamics and the “African Humid Period”. Quaternary Research 74: 36–45.CrossRefGoogle Scholar
  13. Chen, C. D., 1998. Biodiversity of China: A Country Study. Environmental Science Press, Beijing.Google Scholar
  14. Cook, C. G. & R. T. Jones, in press. Palaeoclimate dynamics in continental Southeast Asia over the last ~30,000 cal yr BP. Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
  15. Cook, C. G., R. T. Jones & C. S. M. Turney, in prep. Evidence for a phase of reduced lake levels, enhanced aridity and Asian summer monsoon weakening during the early Holocene. Boreas.Google Scholar
  16. Cook, C. G., R. T. Jones, P. G. Langdon, M. J. Leng & E. Zhang, 2011. New insights on Late Quaternary Asian palaeomonsoon variability and the timing of the Last Glacial Maximum in southwestern China. Quaternary Science Reviews 30: 808–820.CrossRefGoogle Scholar
  17. Cook, C. G., M. J. Leng, R. T. Jones, P. G. Langdon & E. Zhang, 2012. Lake ecosystem dynamics and links to climate change inferred from a stable isotope and organic palaeorecord from a mountain lake in southwestern China (c. 22.6–10.5 cal ka BP). Quaternary Research 77: 132–137.CrossRefGoogle Scholar
  18. Dansgaard, W., S. J. Johnsen, H. B. Clausen, D. Dahl-Jensen, N. S. Gundestrup, C. U. Hammer, C. S. Hvidberg, J. P. Steffensen, A. E. Sveinbjoörnsdottir, J. Jouzel & G. Bond, 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364: 218–220.CrossRefGoogle Scholar
  19. deMenocal, P., J. Ortiz, T. Guilderson, J. Adkins, M. Sarnthein, L. Baker & M. Yarusinsky, 2000. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19: 347–361.CrossRefGoogle Scholar
  20. Denton, G. H. & W. Karlén, 1973. Holocene climatic variations—their pattern and possible cause. Quaternary Research 3: 155–205.CrossRefGoogle Scholar
  21. Denys, L., 1991. A Check-List of the Diatoms in the Holocene Coastal Deposits of the Western Belgian Coastal Plain with a Survey of Their Apparent Ecological Requirements 1. Geological Survey of Belgium.Google Scholar
  22. Dykoski, C. A., R. L. Edwards, H. Cheng, D. Yuan, Y. Cai, M. Zhang, Y. Lin, J. Qing, Z. An & J. Revenaugh, 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233: 71–86.CrossRefGoogle Scholar
  23. Faegri, K. & J. Iversen, 1981. Textbook of Pollen Analysis. Wiley, Chichester.Google Scholar
  24. Fan, Z. X., A. Brauning, B. Yang & K. F. Cao, 2009. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global and Planetary Change 65: 1–11.CrossRefGoogle Scholar
  25. Flora of China Editorial Committee, 2006. Flora of China. Retrieved March 22, 2011, from E-Floras:
  26. Fujiki, T., Z. Zhou & Y. Yasuda, 2005. The Pollen Flora of Yunnan, China. Roli Books Pvt. Ltd, Singapore.Google Scholar
  27. Grimm, E. C., 2004. TILIA and TILIA.GRAPH v.2.0.2. Illinois State Museum, Springfield.Google Scholar
  28. Hartley, B., H. G. Barber, J. R. Carter & P. A. Sims, 1996. An Atlas of British Diatoms. Biopress, Bristol.Google Scholar
  29. Hendey, N. I., 1964. An Introductory Account of the Smaller Algae of the British Coastal Waters Part V: Bacillariophyceae (diatoms). HMSO, London.Google Scholar
  30. Herzschuh, U., 2006. Paleo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quaternary Science Reviews 25: 163–178.CrossRefGoogle Scholar
  31. Institute of Botany and South China Institute of Botany, 1982. Angiosperm Pollen Flora of Tropic and Subtropic China. Science Press, Beijing.Google Scholar
  32. Jarvis, D. I., 1993. Pollen evidence of changing Holocene monsoon climate in Sichuan Province, China. Quaternary Research 39: 325–337.CrossRefGoogle Scholar
  33. Jones, R. T. & J. Jordan, 2007. Lake level studies: overview. In Encyclopedia of Quaternary Science. Elsevier: 1319–1336.Google Scholar
  34. Kelly, M. G., H. Bennion, E. J. Cox, B. Goldsmith, J. Jamieson, S. Juggins, D. G. Mann & R. J. Telford, 2005. Common Freshwater Diatoms of Britain and Ireland: An Interactive Key. Environment Agency, Bristol.Google Scholar
  35. Korner, C. & J. Paulsen, 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography 31: 713–732.CrossRefGoogle Scholar
  36. Kramer, A., U. Herzschuh, S. Mischke & C. Zhang, 2010. Holocene treeline shifts and monsoon variability in the Hengduan Mountains (southeastern Tibetan Plateau), implications from palynological investigations. Palaeogeography, Palaeoclimatology, Palaeoecology 286: 23–41.CrossRefGoogle Scholar
  37. Langdon, P. G., Z. Ruiz, S. Wynne, C. D. Sayer & T. A. Davidson, 2010. Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshwater Biology 55: 531–545.CrossRefGoogle Scholar
  38. Last, W. M. & J. P. Smol (eds), 2001. Tracking Environmental Change Using Lake Sediments: Volume 2: Physical and Geochemical Methods. Developments in Paleoenvironmental Research. Kluwer, Dordrecht.Google Scholar
  39. Lopez-Pujol, J., F. Zhang & G. E. Song, 2006. Plant biodiversity in China: richly varied, endangered, and in need of conservation. Biodiversity and Conservation 5: 3983–4026.CrossRefGoogle Scholar
  40. Lu, H. Y., N. Q. Wu, X. D. Yang, C. M. Shen, L. P. Zhu, L. Wang, Q. Li, D. K. Xu, G. B. Tong & X. J. Sun, 2008. Spatial patterns of Abies and Picea surface pollen distribution along the elevation gradient in the Qinghai-Tibetan Plateau and Xinjiang, China. Boreas 37: 254–262.CrossRefGoogle Scholar
  41. Mackinnon, J., M. Sha, C. Cheung, G. Carey, X. Zhu & D. Melville, 1996. A Biodiversity Review of China. WWF International, Hong Kong.Google Scholar
  42. Mayr, C., M. Wille, T. Haberzettl, M. Fey, S. Janssen, A. Lücke, C. Ohlendorf, G. Oliva, F. Schäbitz, G. H. Schleser & B. Zolitschka, 2007. Holocene variability of the Southern Hemisphere westerlies in Argentinean Patagonia (52°S). Quaternary Science Reviews 26: 579–584.CrossRefGoogle Scholar
  43. McCave, I. N. & J. P. M. Syvitski, 1991. Principles and methods of geological particle size analysis. In Syvitski, J. (ed.), Principles Methods and Application of Particle Size Analysis. Cambridge University Press, Cambridge: 3–21.CrossRefGoogle Scholar
  44. Menitsky, Y. L., 2005. Oaks of Asia. Science Publishers, Plymouth.Google Scholar
  45. Meyers, S. R. & B. B. Sageman, 2004. Detection, quantification, and significance of hiatuses in pelagic and hemipelagic strata. Earth and Planetary Science Letters 224: 55–72.CrossRefGoogle Scholar
  46. Mittermeier, R., 2005. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions. Chicago University Press, Chicago.Google Scholar
  47. Moore, P. D., J. M. Webb & M. E. Collinson (eds), 1991. Pollen Analysis. Blackwell Science, Oxford.Google Scholar
  48. Moseley, R. K., 2006. Historical landscape change in Northwestern Yunnan, China. Mountain Research and Development 26: 214–219.CrossRefGoogle Scholar
  49. Moy, C. M., G. O. Seltzer, D. T. Rodbell & D. M. Anderson, 2002. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420: 162–165.PubMedCrossRefGoogle Scholar
  50. National Development and Reform Commission, P. R. China, 2007. China’s National Climate Change Programme.Google Scholar
  51. Nature Conservancy Council, 2011. China: Places we Protect: China’s First National Park. Retrieved March 21, 2011, from
  52. Peterson, T. C., R. Vose, R. Schmoyer & V. Razuvaev, 1998. Global Historical Climatology Network (GHCN) quality control of monthly temperature data. International Journal of Climatology 18: 1169–1179.CrossRefGoogle Scholar
  53. Qiao, B., 2004. Color Atlas of Air-Borne Pollens and Plants in China. Peking Union Medical College Press, Beijing.Google Scholar
  54. Reimer, P. J., M. G. L. Baillie, E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell, C. Bronk Ramsey, C. E. Buck, G. S. Burr, R. L. Edwards, M. Friedrich, P. M. Grootes, T. P. Guilderson, I. Hajdas, T. J. Heaton, A. G. Hogg, K. A. Hughen, K. F. Kaiser, B. Kromer, G. McCormac, S. W. Manning, R. W. Reimer, D. A. Richards, J. R. Southon, S. Talamo, C. S. M. Turney, J. van der Plicht & C. E. Weyhenmeyer, 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51: 1111–1150.Google Scholar
  55. Ren, G., 2007. Changes in forest cover in China during the Holocene. Vegetation History and Archaeobotany 16: 119–126.CrossRefGoogle Scholar
  56. Sadler, P. M., 1999. The influence of hiatuses on sediment accumulation rates. GeoResearch Forum 5: 15–40.Google Scholar
  57. Stockmarr, T., 1971. Tablets with spores used in absolute pollen analysis. Pollen et spores 13: 615–621.Google Scholar
  58. Sun, X., Wu, Y., Qiao, Y., Walker, D., 1986. Late pleistocene and holocene vegetation history at kunming, yunnan province, southwest China. Journal of Biogeography 13: 441–476Google Scholar
  59. Thompson, L. G., T. D. Yao, M. E. Davis, K. A. Henderson, E. Mosley-Thompson, P. Lin, J. Beer, H. A. Synal, J. Cole-Dai & J. F. Olzan, 1997. Tropical climate instability, the last glacial cycle from a Qinghai–Tibetan ice core. Science 276: 1821–1825.CrossRefGoogle Scholar
  60. Turney, C., M. Baillie, S. Clemens, D. Brown, J. Palmer, J. Pilcher, P. Reimer & H. H. Leuschner, 2005. Testing solar forcing of pervasive Holocene climate cycles. Journal of Quaternary Science 20: 511–518.CrossRefGoogle Scholar
  61. UNESCO, 2010. Sichuan Giant Panda Sanctuaries—Wolong, Mt Siguniang and Jiajin Mountains. Retrieved January 21, 2010, from
  62. UNESCO, 2011. World Heritage List: The Three Parallel Rivers of Yunnan Protected Areas. Retrieved March 21, 2011, from
  63. Van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Journal of Aquatic Ecology 28: 117–133.CrossRefGoogle Scholar
  64. Van der Werf, A. & H. Huls, 1957–1974. Diatomienflore Van Nederland, 8 Parts. Otto Koeltz Science Publishers, Koenigstein.Google Scholar
  65. Virkanen, J., 2000. The effects of natural environmental changes on sedimentation Lake Kuttanen, a small closed lake in Finnish Lapland. The Holocene 10: 377–386.CrossRefGoogle Scholar
  66. Vos, P. C. & H. de Wolf, 1993. Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects. Hydrobiologia 269(270): 285–296.CrossRefGoogle Scholar
  67. Walden, J., F. Oldfield & J. Smith (eds), 1999. Environmental Magnetism: A Practical Guide: Technical Guide No. 6. Quaternary Research Association, London.Google Scholar
  68. Walker, D., 1986. Late Pleistocene-early Holocene vegetational and climatic changes on Yunnan Province, southwest China. Journal of Biogeography 13: 477–486.CrossRefGoogle Scholar
  69. Wang, F., N. Qian, Y. Zhang & H. Yang, 1995. Plant Pollen Morphology of China. Science Press, Beijing.Google Scholar
  70. Wang, Y. J., H. Cheng, R. L. Edwards, Y. Q. He, X. G. Kong, Z. S. An, J. Y. Wu, M. J. Kelly, C. A. Dykoski & X. D. Li, 2005. The Holocene Asian Monsoon: links to solar changes and North Atlantic climate. Science 308: 854–857.PubMedCrossRefGoogle Scholar
  71. Zhang, C. & S. Mischke, 2009. A Lateglacial and Holocene lake record from the Nianbaoyeze Mountains and inferences of lake, glacier and climate evolution on the eastern Tibetan Plateau. Quaternary Science Reviews 28: 1970–1983.CrossRefGoogle Scholar
  72. Zhang, E., P. G. Langdon, H. Tang, R. T. Jones, X. Yang & J. Shen, 2011. Ecological influences affecting the distribution of larval chironomid communities in the lakes on Yunnan Plateau, SW China. Fundamental and Applied Limnology 179: 103–113.CrossRefGoogle Scholar
  73. Zhong, W., J. Xue, Y. Zheng, J. Ouyang, Q. Ma, Y. Cai & X. Tang, 2010. Climatic changes since the last deglaciation inferred from a lacustrine sedimentary sequence in the eastern Nanling Mountains, south China. Journal of Quaternary Science 25: 975–984.CrossRefGoogle Scholar
  74. Zhou, W. & B. Chen, 2006. Biodiversity of Bitahai Nature Reserve in Yunnan Province, China. Biodiversity and Conservation 15: 839–853.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Richard T. Jones
    • 1
  • Charlotte G. Cook
    • 2
  • Enlou Zhang
    • 3
  • Peter G. Langdon
    • 4
  • Jason Jordan
    • 5
  • Chris Turney
    • 2
  1. 1.Geography, College of Life and Environmental SciencesUniversity of ExeterExeterUK
  2. 2.Climate Change Research Centre and School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyAustralia
  3. 3.Nanjing Institute of Geography & LimnologyChinese Academy of SciencesNanjingPeople’s Republic of China
  4. 4.School of GeographyUniversity of SouthamptonSouthamptonUK
  5. 5.Department of Geography, Environment & Disaster ManagementCoventry UniversityCoventryUK

Personalised recommendations