Hydrobiologia

, Volume 695, Issue 1, pp 253–263 | Cite as

Effect of streamlining taxa lists on diatom-based indices: implications for intercalibrating ecological status

ALGAE FOR MONITORING RIVERS

Abstract

Intercalibration of ecological status class boundaries between member states is a requirement of the European Union’s Water Framework Directive. Although a preliminary intercalibration of boundaries established for phytobenthos has been performed, a number of questions remain, including the extent to which variations in taxonomic concepts used in different member states influences the position of these boundaries. In this paper, the robustness of the diatom-based metrics used for intercalibration is assessed. Whilst use of genus-level identification led to a loss of ecological information, merging representatives of closely-related taxa has little effect on these metrics. Similarly, taxa that occur only rarely or never have high relative abundances in a dataset can also be ignored without the loss of ecological information. Similar results were obtained when modern taxonomic concepts were compared with concepts in use 80 years ago. Fine scale taxonomy may play a valuable role within member states; however, our results suggest that, at a continental scale, a simplified approach to diatom taxonomy should not affect intercalibration results.

Keywords

Algae Monitoring Phytobenthos Rivers Streams Water Framework Directive 

References

  1. Baas-Becking, L. G. M., 1934. Geobiologie of inleiding tot de milieukunde. W. P. Van Stockum and Zoon, The Hague.Google Scholar
  2. Blanco, S. & L. Ector, 2009. Distribution, ecology and nuisance effects of the freshwater invasive diatom Didymosphenia geminata (Lyngbye) M. Schmidt: a literature review. Nova Hedwigia 88: 347–422.CrossRefGoogle Scholar
  3. Blanco, S., L. Ector, V. Huck, O. Monnier, H. M. Cauchie, L. Hoffmann & E. Bécares, 2008. Diatom assemblages and water quality assessment in the Duero basin (NW Spain). Belgian Journal of Botany 141: 39–50.Google Scholar
  4. CEMAGREF, 1982. Etude des Méthodes Biologiques d’Appréciation Quantitative de la Qualité des Eaux. Ministère de l’Agriculture, CEMAGREF, Division Qualité des Eaux, Pêche et Pisciculture, Lyon: 218 pp.Google Scholar
  5. CEN, 2003. Water quality – Guidance Standard for the Routine Sampling and Pretreatment of Benthic Diatoms from Rivers. European Standard EN 13946. European Committee for Standardization, Brussels: 14 pp.Google Scholar
  6. CEN, 2004. Water quality – Guidance Standard for the Identification, Enumeration and Interpretation of Benthic Diatom Samples from Running Waters. European Standard EN 14407. European Committee for Standardization, Brussels: 12 pp.Google Scholar
  7. Coste, M. & H. Ayphassorho, 1991. Étude de la Qualité des Eaux du Bassin Artois-Picardie à l’Aide des Communautés de Diatomées Benthiques. Application des Indices Diatomiques au Réseau. Cemagref Bordeaux - Agence de l’Eau Artois-Picardie, Rapport Convention d’étude n. 90 X 3300 du 19 juin 1990: 227 pp.Google Scholar
  8. Coste, M. & L. Ector, 2000. Diatomées invasives exotiques ou rares en France: principales observations effectuées au cours des dernières décennies. Systematics and Geography of Plants 70: 373–400.CrossRefGoogle Scholar
  9. Cox, E. J., 2003. Sorting out the rag-bag: live material, SEM data and the systematics of naviculoid diatoms. Quekett Journal of Microscopy 39: 447–458.Google Scholar
  10. European Union, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 20000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L327: 1–73.Google Scholar
  11. Feio, M. J., S. F. P. Almeida, S. C. Craveiro & A. J. Calado, 2009. A comparison between biotic indices and predictive models in stream water quality assessment based on benthic diatom communities. Ecological Indicators 9: 497–507.CrossRefGoogle Scholar
  12. Finlay, B. J., E. B. Monaghan & S. C. Maberly, 2002. Hypothesis: the rate and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist 153: 261–273.PubMedCrossRefGoogle Scholar
  13. Heino, J., L. M. Bini, S. M. Karjalainen, H. Mykrä, J. Soininen, L. C. G. Vieira & J. A. F. Diniz-Filho, 2010. Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams? Oikos 119: 129–137.CrossRefGoogle Scholar
  14. Hill, M. O., 1979. DECORANA – A FORTRAN Program for Detrended Correspondence Analysis and Reciprocal Averaging. Ecology and Systematics. Cornell University, Ithaca, NY.Google Scholar
  15. Hustedt, F., 1930. Bacillariophyta (Diatomeae). In Pascher, A. (ed.), Die Süsswasser-Flora Mitteleuropas, Vol. 10. Gustav Fischer, Jena: 1–466.Google Scholar
  16. Kahlert, M., R.-L. Albert, E.-L. Anttila, R. Bengtsson, C. Bigler, T. Eskola, V. Gälman, S. Gottschalk, E. Herlitz, A. Jarlman, J. Kasperoviciene, M. Kokociński, H. Luup, J. Miettinen, I. Paunksnyte, K. Piirsoo, I. Quintana, J. Raunio, B. Sandell, H. Simola, I. Sundberg, S. Vilbaste & J. Weckström, 2009. Harmonization is more important than experience – results of the first Nordic-Baltic diatom intercalibration exercise 2007 (stream monitoring). Journal of Applied Phycology 21: 471–482.CrossRefGoogle Scholar
  17. Kahlert, M., M. G. Kelly, R.-L. Albert, S. Almeida, T. Bešta, S. Blanco, L. Denys, L. Ector, M. Fránková, D. Hlúbiková, P. Ivanov, B. Kennedy, P. Marvan, A. Mertens, J. Miettinen, J. Picinska-Fałtynowicz, J. Rosebery, E. Tornés, H. van Dam, S. Vilbaste & A. Vogel, 2012. Identification is a minor source of uncertainty in diatom-based ecological status assessments on a continent-wide scale: results of a European ring-test. Hydrobiologia. doi:10.1007/s10750-012-1115-z.
  18. Kelly, M. G., 2006. A comparison of diatoms with other phytobenthos as indicators of ecological status in streams in northern England. In Witkowski, A. (ed.), Proceedings of the Eighteenth International Diatom Symposium, Miedzydroje, Poland, 2–7 September 2004. Biopress, Bristol: 139–151.Google Scholar
  19. Kelly, M. G., C. J. Penny & B. A. Whitton, 1995. Comparative performance of benthic diatom indices used to assess river water quality. Hydrobiologia 302: 179–188.CrossRefGoogle Scholar
  20. Kelly, M. G., M. M. Bayer, J. Hürlimann & R. J. Telford, 2002. Human error and quality assurance in diatom analysis. In du Buf, H. & M. M. Bayer (eds), Automatic Diatom Identification. World Scientific, Singapore: 75–91.CrossRefGoogle Scholar
  21. Kelly, M. G., L. King, R. I. Jones, P. A. Barker & B. J. Jamieson, 2008. Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia 610: 125–129.CrossRefGoogle Scholar
  22. Kelly, M., L. King & B. Ní Chatháin, 2009a. The conceptual basis of ecological-status assessments using diatoms. Biology and Environment: Proceedings of the Royal Irish Academy 109B: 175–189.CrossRefGoogle Scholar
  23. Kelly, M., C. Bennett, M. Coste, C. Delgado, F. Delmas, L. Denys, L. Ector, C. Fauville, M. Ferréol, M. Golub, A. Jarlman, M. Kahlert, J. Lucey, B. Ní Chatháin, I. Pardo, P. Pfister, J. Picinska-Faltynowicz, J. Rosebery, C. Schranz, J. Schaumburg, H. van Dam & S. Vilbaste, 2009b. A comparison of national approaches to setting ecological status boundaries in phytobenthos assessment for the European Water Framework Directive: results of an intercalibration exercise. Hydrobiologia 621: 169–182.CrossRefGoogle Scholar
  24. Krammer, K., 1997. Die cymbelloiden Diatomeen. Eine Monographie der weltweit bekannten Taxa. Teil 1: Allgemeines und Encyonema Part. Bibliotheca Diatomologica 36: 1–382.Google Scholar
  25. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae 1. Teil: Naviculaceae, 876 pp.; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, 596 pp.; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, 576 pp.; 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, 437 pp. G. Fischer Verlag, Stuttgart.Google Scholar
  26. Kwandrans, J., P. Eloranta, B. Kawecka & K. Wojtan, 1998. Use of benthic diatom communities to evaluate water quality in rivers of southern Poland. Journal of Applied Phycology 10: 193–201.CrossRefGoogle Scholar
  27. Lavoie, I., P. J. Dillon & S. Campeau, 2009. The effect of excluding diatom taxa and reducing taxonomic resolution on multivariate analyses and stream bioassessment. Ecological Indicators 9: 213–225.CrossRefGoogle Scholar
  28. Lin, L. I.-K., 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45: 255–268.PubMedCrossRefGoogle Scholar
  29. Mann, D. G., 1999. The species concept in diatoms. Phycologia 38: 437–495.CrossRefGoogle Scholar
  30. Medlin, L. K., 2007. If everything is everywhere, do they share a common gene pool? Gene 406: 180–183.PubMedCrossRefGoogle Scholar
  31. Monnier, O., H. Lange-Bertalot, L. Hoffmann & L. Ector, 2007a. The genera Achnanthidium Kützing and Psammothidium Bukhtiyarova et Round in the family Achnanthidiaceae (Bacillariophyceae): a reappraisal of the differential criteria. Cryptogamie, Algologie 28: 141–158.Google Scholar
  32. Monnier, O., F. Rimet, M. Bey, R. Chavaux & L. Ector, 2007b. Sur l’identité de Cocconeis euglypta Ehrenberg 1854 et C. lineata Ehrenberg 1843 - Une approche par les sources historiques. Diatomania 11: 30–45.Google Scholar
  33. Oksanen, J., R. Kindt, P. Legendre, & R. B. O’Hara, 2007. Vegan: Community Ecology Package version 1.8-6 [available on internet at http://cran.r-project.org/].
  34. Pfister, P. & E. Pipp, 2009. Fliessgewässer Qualitätselement Phytobenthos: Felderhebung, Probenahme, Probenaufarbeitung und Ergebnisermittlung. Leitfaden zur Erhebung der Biologischen Qualitätselemente Teil A3 – Phytobenthos. Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien: 93 pp.Google Scholar
  35. Potapova, M. G. & D. F. Charles, 2002. Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. Journal of Biogeography 29: 167–187.CrossRefGoogle Scholar
  36. Prygiel, J. & M. Coste, 1993. Utilisation des indices diatomiques pour la mesure de la qualité des eaux du bassin Artois-Picardie : bilan et perspectives. Annales de Limnologie 29: 255–267.CrossRefGoogle Scholar
  37. Prygiel, J., L. Leveque & R. Iserentant, 1996. Un nouvel Indice Diatomique Pratique pour l’évaluation de la qualité des eaux en réseau de surveillance. Revue des Sciences de l’Eau 1: 97–113.Google Scholar
  38. Prygiel, J., M. Coste & J. Bukowska, 1999. Review of the major diatom-based techniques for the quality assessment of rivers – State of the art in Europe. In Prygiel, J., B. A. Whitton & J. Bukowska (eds), Use of Algae for Monitoring Rivers III. Agence de l’Eau Artois-Picardie, Douai: 224–238.Google Scholar
  39. Prygiel, J., P. Carpentier, S. Almeida, M. Coste, J.-C. Druart, L. Ector, D. Guillard, M.-A. Honoré, R. Iserentant, P. Ledeganck, C. Lalanne-Cassou, C. Lesniak, I. Mercier, P. Moncaut, M. Nazart, N. Nouchet, F. Peres, V. Peeters, F. Rimet, A. Rumeau, S. Sabater, F. Straub, M. Torrisi, L. Tudesque, B. Van de Vijver, H. Vidal, J. Vizinet & N. Zydek, 2002. Determination of the biological diatom index (IBD NF T 90-354): results of an intercomparison exercise. Journal of Applied Phycology 14: 27–39.CrossRefGoogle Scholar
  40. R Development Core Team, 2006. R: A Language and Environment for Statistical Computing. R. Foundation for Statistical Computing, Vienna, Austria [available on internet at http://www.r-project.org/].
  41. Rimet, F., L. Ector, H. M. Cauchie & L. Hoffmann, 2004. Regional distribution of diatom assemblages in the headwater streams of Luxembourg. Hydrobiologia 520: 105–117.CrossRefGoogle Scholar
  42. Rimet, F., H.-M. Cauchie, L. Hoffmann & L. Ector, 2005. Response of diatom indices to simulated water quality improvements in a river. Journal of Applied Phycology 17: 119–128.CrossRefGoogle Scholar
  43. Rott, E., E. Pipp, P. Pfister, H. van Dam, K. Ortler, N. Binder & K. Pall, 1999. Indikationslisten für Aufwuchsalgen in österreichischen Fließgewässern. Teil 2: Trophieindikation (sowie geochemische Präferenzen, taxonomische und toxikologische Anmerkungen). Wasserwirtschaftskataster herausgegeben vom Bundesministerium f. Land- u. Forstwirtschaft, Wien: 248 pp.Google Scholar
  44. Rumeau, A. & M. Coste, 1988. Initiation à la systématique des diatomées d’eau douce. Pour l’utilisation pratique d’un indice diatomique générique. Bulletin Français de la Pêche et de la Pisciculture 309: 1–69.CrossRefGoogle Scholar
  45. Schaumburg, J., C. Schranz, J. Foerster, A. Gutowski, G. Hofmann, P. Meilinger, S. Schneider & U. Schmedtje, 2004. Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica 34: 283–301.CrossRefGoogle Scholar
  46. Stevenson, M., 2010. epiR: Functions for analysing epidemiological data. Version 0.9-27 [available on internet at http://cran.r-project.org/web/packages/epiR].
  47. Telford, R. J., V. Vandvik & H. J. B. Birks, 2006. How many freshwater diatoms are pH specialists? A response to Pither & Aarssen (2005). Ecology Letters 9: E1–E5.PubMedCrossRefGoogle Scholar
  48. Vyverman, W., E. Verleyen, K. Sabbe, K. Vanhoutte, M. Sterken, D. A. Hodgson, D. G. Mann, S. Juggins, B. Van de Vijver, V. Jones, R. Flower, D. Roberts, V. A. Chepurnov, C. Kilroy, P. Vanormelingen & A. De Wever, 2007. Historical processes constrain patterns in global diatom diversity. Ecology 88: 1924–1931.PubMedCrossRefGoogle Scholar
  49. Wu, J.-T. & L.-T. Kow, 2002. Applicability of a generic index for diatom assemblages to monitor pollution in the tropical River Tsanwun, Taiwan. Journal of Applied Phycology 14: 63–69.CrossRefGoogle Scholar
  50. Zelinka, M. & P. Marvan, 1961. Zur Präzisierung der biologischen Klassifikation der Reinheit fliessender Gewässer. Archiv für Hydrobiologie 57: 389–407.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Bowburn ConsultancyBowburnUK
  2. 2.Department of Environment and Agro-Biotechnologies (EVA)Public Research Centre—Gabriel LippmannBelvauxLuxembourg

Personalised recommendations