, Volume 695, Issue 1, pp 83–96 | Cite as

Patterns of biofilm formation in two streams from different bioclimatic regions: analysis of microbial community structure and metabolism

  • Joan Artigas
  • Katharina Fund
  • Silke Kirchen
  • Soizic Morin
  • Ursula Obst
  • Anna M. Romaní
  • S. Sabater
  • Thomas Schwartz


This study evaluates the sequences of biofilm colonization at two stream sites located in different bioclimatic regions (Mediterranean and Central European). Despite of the ecoregional differences, the two selected streams mainly differed by their hydrology and nutrient condition. A range of structural [microbial biomass, nutrient content, extracellular polymeric substances (EPS)-polysaccharide content] and metabolic (extracellular enzyme activities) descriptors were analyzed during the colonization period of 60 days. The succession of bacterial communities was investigated through the 16S rDNA gene analysis and taxonomical identification was used in diatom communities. Differences in algal biomass were not significant between the two stream biofilms, but the bacterial density and aminopeptidase and β-glucosidase activities were higher in the Mediterranean biofilms, probably due to greater coarse particulate organic matter (CPOM) accumulation in the latter. The colonization sequences of algae and bacteria in the biofilms were faster in the Mediterranean stream biofilms and slower and gradual in the Central European stream biofilms. Floods caused disruption in the microbial succession and re-colonization, favouring the re-appearance of early colonizing taxa and increasing the community diversity. Biofilms in the Mediterranean stream had a higher amount of early colonizing species (the diatoms Ulnaria ulna and Karayevia clevei and the β-proteobacteria group), as well as higher polysaccharide development in the extracellular polymeric substances (EPS) matrix. These differences could be an adaptation to the marked hydrological changes characteristic of Mediterranean streams. In contrast, the microbial community complexity gradually increased and nutrients and proteins largely accumulated in the Central European biofilms, reflecting the higher hydrological stability as well as the higher nutrient availability.


Bacteria Diatom Biofilm Central European Mediterranean Stream 



This study has been funded by the projects CGL2007-65549/BOS, CGL2008-05618-C02-01 and Consolider-Ingenio CSD2009-00065 (SCARCE) of the Spanish Ministry of Science and Technology, and Deutscher Akademischer Austauschdienst (DAAD; Spanien-Acciones Integradas 2005).


  1. Aboal, M., M. A. Puig & G. Soler, 1996. Diatom assemblages in some Mediterranean temporary streams in southeastern Spain. Archiv für Hydrobiologie 136: 509–527.Google Scholar
  2. Amalfitano, S., S. Fazi, A. Zoppini, A. B. Caracciolo, P. Grenni & A. Puddu, 2008. Responses of benthic bacteria to experimental drying in sediments from Mediterranean temporary rivers. Microbial Ecology 55: 270–279.PubMedCrossRefGoogle Scholar
  3. American Public Health Association, 1989. Standard Methods for the Examination of Water and Wastewater, 17th ed. APHA, Washington, DC.Google Scholar
  4. Arnon, S., A. I. Packman, C. G. Peterson & K. A. Gray, 2007. Effect of overlying velocity on periphyton structure and denitrification. Journal of Geophysical Research 112: G01002.CrossRefGoogle Scholar
  5. Artigas, J., A. M. Romaní & S. Sabater, 2008. Relating nutrient molar ratios of microbial attached communities to organic matter utilization in a forested stream. Fundamental and Applied Limnology/Archiv für Hydrobiologie 173: 255–264.CrossRefGoogle Scholar
  6. Battin, T. J., L. A. Kaplan, J. D. Newbold, X. Cheng & C. Hansen, 2003. Effects of current velocity on the nascent architecture of stream microbial biofilms. Applied and Environmental Microbiology 69: 5443–5452.PubMedCrossRefGoogle Scholar
  7. Besemer, K., G. Singer, R. Limberger, A.-K. Chlup, G. Hochedlinger, I. Hödl, C. Baranyi & T. J. Battin, 2007. Biophysical controls on community succession in stream biofilms. Applied and Environmental Microbiology 73: 4966–4974.PubMedCrossRefGoogle Scholar
  8. Boulêtreau, S., F. Garabétian, S. Sauvage & J. M. Sánchez-Pérez, 2006. Assessing the importance of a self-generated detachment process in river biofilm models. Freshwater Biology 50: 901–912.CrossRefGoogle Scholar
  9. Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.PubMedCrossRefGoogle Scholar
  10. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356.CrossRefGoogle Scholar
  11. Findlay, R. H., C. Yeates, M. A. J. Hullar, D. A. Stahl & L. A. Kaplan, 2008. Biome-level biogeography of streambed microbiota. Applied and Environmental Microbiology 74: 3014–3021.PubMedCrossRefGoogle Scholar
  12. Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 50–81.CrossRefGoogle Scholar
  13. Gosselain, V., S. Campeau, M. Gevrey, M. Coste, L. Ector, F. Rimet, J. Tison, F. Delmas, Y. S. Park, S. Lek & J.-P. Descy, 2005. Diatom typology of low-impacted conditions at a multi-regional scale: combined results of multivariate analyses and SOM. In Lek, S., M. Scardi, P. F. M. Verdonschot, J.-P. Descy & Y.-S. Park (eds), Modelling Community Structure in Freshwater Ecosystems. Springer, Berlin: 317–342.CrossRefGoogle Scholar
  14. Grasshoff, K., M. Ehrhardt & K. Kremling (eds), 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim.Google Scholar
  15. Hillebrand, H., 2008. Grazing regulates the spatial variability of periphyton biomass. Ecology 89: 165–173.PubMedCrossRefGoogle Scholar
  16. Jackson, C. R., P. F. Churchill & E. E. Roden, 2001. Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82: 555–566.CrossRefGoogle Scholar
  17. Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.Google Scholar
  18. Jenkinson, H. F. & H. M. Lappin-Scott, 2001. Biofilms adhere to stay. Trends in Microbiology 9: 9–10.PubMedCrossRefGoogle Scholar
  19. Krammer, K. & H. Lange-Bertalot, 1991–1997. Bacillariophyceae, 2 (1-4). In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa. Fischer, Stuttgart.Google Scholar
  20. Lake, S., N. Bond & P. Reich, 2006. Floods down rivers: from damaging to replenishing forces. Advances in Ecological Research 39: 41–62.CrossRefGoogle Scholar
  21. Lange-Bertalot, H., 2001. Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia. In Lange-Bertalot, H. (ed.), Diatoms of Europe, Vol. 2. A.R.G. Gantner Verlag K.G, Ruggell, Liechtenstein: 526 pp.Google Scholar
  22. Leira, M. & S. Sabater, 2005. Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research 39: 73–82.PubMedCrossRefGoogle Scholar
  23. Lohman, K., J. R. Jones & B. D. Perkins, 1992. Effects of nutrient enrichment and flood frequency on periphyton biomass in Northern Ozark streams. Canadian Journal of Fisheries and Aquatic Sciences 49: 1198–1205.CrossRefGoogle Scholar
  24. Manz, W., K. Wendt-Potthoff, T. R. Neu, U. Szewzyk & J. R. Lawrence, 1999. Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy. Microbial Ecology 37: 225–237.PubMedCrossRefGoogle Scholar
  25. Morin, S., M. Coste & F. Delmas, 2008. A comparison of specific growth rates of periphytic diatoms of varying cell size under laboratory and field conditions. Hydrobiologia 614: 285–297.CrossRefGoogle Scholar
  26. Muyzer, G., E. C. De Waal & A. G. Uitterlinden, 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59: 695–700.PubMedGoogle Scholar
  27. Muyzer, G., T. Brinkhoff, U. Nübel, C. Santegoeds, H. Schäfer & C. Wawer, 1997. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology, Chap. 3.4.4. In Akkermans, A. D. L., J. D. van Elsas & F. J. de Bruijn (eds), Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht: 1–27.Google Scholar
  28. Neu, T. R., G. D. W. Swerhone, U. Böckelmann & J. R. Lawrence, 2005. Effect of CNP on composition and structure of lotic biofilms as detected with lectin-specific glycoconjugates. Aquatic Microbial Ecology 38: 283–294.CrossRefGoogle Scholar
  29. Potapova, M. & D. F. Charles, 2003. Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311–1328.CrossRefGoogle Scholar
  30. Pringle, C. M., 1990. Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71: 905–920.CrossRefGoogle Scholar
  31. Rickard, A. H., A. J. McBain, A. T. Stead & P. Gilbert, 2004. Shear rates moderates community diversity in freshwater biofilms. Applied and Environmental Microbiology 70: 7426–7435.PubMedCrossRefGoogle Scholar
  32. Romaní, A. M. & S. Sabater, 2001. Structure and activity of rock and sand biofilms in a Mediterranean stream. Ecology 82: 3232–3245.Google Scholar
  33. Romaní, A. M., K. Fund, J. Artigas, T. Schwartz, S. Sabater & U. Obst, 2008. Relevance of polymeric matrix enzymes during biofilm formation. Microbial Ecology 56: 427–436.PubMedCrossRefGoogle Scholar
  34. Rott, E., M. Cantonati, L. Füreder & P. Pfister, 2006. Benthic algae in high altitude streams of the Alps—a neglected component of the aquatic biota. Hydrobiologia 562: 195–216.CrossRefGoogle Scholar
  35. Sabater, S. & A. M. Romaní, 1996. Metabolic changes associated with biofilm formation in an undisturbed Mediterranean stream. Hydrobiologia 335: 107–113.CrossRefGoogle Scholar
  36. Sabater, S., H. Guasch, A. Romaní & I. Muñoz, 2002. The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia 469: 149–156.CrossRefGoogle Scholar
  37. Sabater, S., A. Elosegi, V. Acuña, A. Basaguren, I. Muñoz & J. Pozo, 2008. Effect of climate on the trophic structure of temperate forested streams. A comparison of Mediterranean and Atlantic streams. The Science of the Total Environment 390: 475–484.PubMedCrossRefGoogle Scholar
  38. Sommer, U., 2000. Benthic microalgal diversity enhanced by spatial heterogeneity of grazing. Oecologia 122: 284–287.CrossRefGoogle Scholar
  39. Steinman, A. D. & C. D. McIntire, 1990. Recovery of lotic periphyton communities after disturbance. Environmental Management 14: 589–604.CrossRefGoogle Scholar
  40. Stevenson, R. J. & C. G. Peterson, 1989. Variation in benthic diatom (Bacillariophyceae) immigration with habitat characteristics and cell morphology. Journal of Phycology 25: 120–129.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Joan Artigas
    • 1
    • 2
  • Katharina Fund
    • 3
  • Silke Kirchen
    • 3
  • Soizic Morin
    • 1
    • 4
  • Ursula Obst
    • 3
  • Anna M. Romaní
    • 1
  • S. Sabater
    • 1
    • 2
  • Thomas Schwartz
    • 3
  1. 1.Institut d’Ecologia Aquàtica, Campus Montilivi, Facultat de CiènciesUniversitat de GironaGironaSpain
  2. 2.Institut Català de Recerca de l’Aigua (ICRA)GironaSpain
  3. 3.Microbiology of Natural and Technical Interfaces Department, Institute of Functional Interfaces (IFG)Forschungszentrum KarlsruheKarlsruheGermany
  4. 4.Cemagref, UR REBXCestas CedexFrance

Personalised recommendations