Hydrobiologia

, Volume 693, Issue 1, pp 71–80 | Cite as

Photochemical mineralization of dissolved organic nitrogen to ammonia in prairie lakes

  • Sereda Jeff
  • Kristine Hunter
  • David Vandergucht
  • Jeff Hudson
Primary Research Paper

Abstract

We examined the rate of photoammonification in 16 lakes from Saskatchewan, Canada. Lakes were selected to encompass a broad range in dissolved organic nitrogen (DON) (269–1,435 μg l−1). Lake filtrate (<0.2 μm) was exposed to artificial solar radiation for 4 h. Rates of photoammonification were significant in 7 of the 16 study lakes. Ammonia (NH3) concentrations increased 0.84–2.85 μg l−1 over control values. This is a 4–92% increase in NH3 concentration and a conversion of 0.18–0.3% of the DON pool to NH3. We developed an empirical model to predict photoammonification rates across aquatic ecosystems. Photoammonification rates and ancillary parameters (i.e., pH, DOC and DON concentrations, DOC:DON ratios, and a350:DOC) were obtained from published studies to expand our dataset for model development. Model selection was conducted with Akaike’s Information Criterion (AIC). DON concentration and pH were selected as model predictors by AIC. Our model explains 49% of the variance in photoammonification rate across a diverse set of aquatic systems. This model may be useful in estimating photoammonification rates in other aquatic systems.

Keywords

Lakes Photoammonification Ultraviolet radiation Ammonia Dissolved organic nitrogen 

References

  1. Art, M. T., R. D. Robarts, F. Kasai, M. J. Waiser, V. P. Tumber, A. J. Plante, H. Rai & H. J. de Lange, 2000. The attenuation of ultraviolet radiation in high dissolved organic carbon waters of wetlands and lakes on the northern Great Plains. Limnology and Oceanography 45: 292–299.CrossRefGoogle Scholar
  2. Arvola, L., 1981. Spectrophotometric determination of chlorophyll a and phaeopigments in ethanol extractions. Annales Botanici Fennici 18: 221–227.Google Scholar
  3. Bachmann, R. & D. Canfield, 1996. Use of an alternative method for monitoring total nitrogen concentrations in Florida lakes. Hydrobiologia 323: 1–8.CrossRefGoogle Scholar
  4. Benner, R., 2002. Chemical composition and reactivity. In Hansell, D. A. & C. A. Carlson (eds), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego: 59–90.CrossRefGoogle Scholar
  5. Bergmann, M. & R. Peters, 1980. A simple reflectance method for the measurement of particulate pigment in lake water and its application to phosphorus–chlorophyll–seston relationships. Canadian Journal of Fisheries and Aquatic Sciences 37: 111–114.CrossRefGoogle Scholar
  6. Bertilsson, S. & L. J. Tranvik, 2000. Photochemical transformation of dissolved organic matter in lakes. Limnology and Oceanography 45: 753–762.CrossRefGoogle Scholar
  7. Bertilsson, S., R. Stepanauskas, R. Cuadros-Hansson, W. Granéli, J. Wikner & L. Tranvik, 1999. Photochemically induced changes in bioavailable carbon and nitrogen pools in a boreal watershed. Aquatic Microbial Ecology 19: 47–56.CrossRefGoogle Scholar
  8. Bronk, D. A. & B. B. Ward, 2002. Inorganic and organic nitrogen cycling in the Southern California Bight. Deep Sea Research Part I 52: 2285–2300.CrossRefGoogle Scholar
  9. Buffam, I. & K. McGlathery, 2003. Effect of ultraviolet light on dissolved nitrogen transformations in coastal lagoon water. Limnology and Oceanography 48: 723–734.CrossRefGoogle Scholar
  10. Burnham, K. P. & D. R. Anderson, 2004. Multimodel inference—understanding AIC and BIC in model selection. Sociological Methods & Research 33: 261–304.CrossRefGoogle Scholar
  11. Bushaw-Newton, K. & M. A. Moran, 1999. Photochemical formation of biologically available nitrogen from dissolved humic substances in coastal marine systems. Aquatic Microbial Ecology 18: 285–292.CrossRefGoogle Scholar
  12. Bushaw, K., R. Zepp, M. Tarr, D. Schulz-Jander, R. Bourbonniere, R. Hodson, W. Miller, D. Bronk & M. A. Moran, 1996. Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature 381: 404–407.CrossRefGoogle Scholar
  13. Crumpton, W., T. Isenhart & P. Mitchell, 1992. Nitrate and organic N analyses with second-derivative spectroscopy. Limnology and Oceanography 37: 907–913.CrossRefGoogle Scholar
  14. Emmenegger, L., R. R. Schonenberger, L. Sigg & B. Sulzberger, 2001. Light-induced redox cycling of iron in circumneutral lakes. Limnology and Oceanography 46: 49–61.CrossRefGoogle Scholar
  15. Francko, D. A. & R. T. Heath, 1982. UV-sensitive complex phosphorous: association with dissolved humic material and iron in a bog lake. Limnology and Oceanography 27: 564–569.CrossRefGoogle Scholar
  16. Gao, H. Z. & R. G. Zepp, 1998. Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States. Environmental Science and Technology 32: 2940–2946.Google Scholar
  17. Gardner, W., J. Cavaletto, H. Bootsma, P. Lavrentyev & F. Troncone, 1998. Nitrogen cycling rates and light effects in tropical Lake Maracaibo, Venezuela. Limnology and Oceanography 43: 1814–1825.Google Scholar
  18. Grzybowski, W., 2002. The significance of dissolved organic matter photodegradation as a source of ammonium in natural waters. Oceanologia 44: 355–365.Google Scholar
  19. Grzybowski, W., 2003. Are data on light-induced ammonium release from dissolved organic matter consistent? Chemosphere 52: 933–936.PubMedCrossRefGoogle Scholar
  20. Jørgensen, N. O. G., L. Tranvik, H. Edling, W. Granéli & M. Lindell, 1998. Effects of sunlight on occurrence and bacterial turnover of specific carbon and nitrogen compounds in lake water. FEMS Microbial Ecology 25: 217–227.CrossRefGoogle Scholar
  21. Kitidis, V., G. Uher, R. C. Upstill-Goddard, R. F. C. Matoura, G. Spyres & E. M. S. Woodward, 2006. Photochemical production of ammonium in the oligotrophic Cyprus Gyre (Eastern Mediterranean). Biogeosciences 3: 439–449.CrossRefGoogle Scholar
  22. Koopmans, D. J. & D. A. Bronk, 2002. Photochemical production of dissolved inorganic nitrogen and primary amines from dissolved organic nitrogen in waters of two estuaries and adjacent surficial groundwaters. Aquatic Microbial Ecology 26: 295–304.CrossRefGoogle Scholar
  23. Krupka, H. M., 1989. Transformations of nitrogen forms in epilimnion of the eutrophic Glebockie Lake (Masurian Lake District, Poland). Polskie Archiwum Hydrobiologii 36: 26–96.Google Scholar
  24. Lindell, M. J., H. W. Graneli & S. Bertilsson, 2000. Seasonal photoreactivity of dissolved organic matter from lakes with contrasting humic content. Canadian Journal of Fisheries and Aquatic Sciences 57: 875–885.CrossRefGoogle Scholar
  25. Moran, M. A., W. M. Sheldon & R. G. Zepp, 2000. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnology and Oceanography 45: 1254–1264.CrossRefGoogle Scholar
  26. Morell, J. M. & J. E. Corredor, 2001. Photomineralization of fluorescent organic matter in the Orinoco River plume: estimation of ammonia release. Journal of Geophysical Research, Oceans 106: 807–813.Google Scholar
  27. Prepas, E. E. & A. M. Trimbee, 1988. Evaluation of indicators of nitrogen limitation in deep prairie lakes with laboratory bioassays and limnocorrals. Hydrobiologia 159: 269–276.CrossRefGoogle Scholar
  28. Salm, C. R., J. E. Saros, S. C. Fritz, C. L. Osburn & D. M. Reineke, 2009. Phytoplankton productivity across prairie saline lakes of the Great Plains (USA): a step toward deciphering patterns through lake classification models. Canadian Journal of Fisheries and Aquatic Sciences 66: 1435–1448.CrossRefGoogle Scholar
  29. Sereda, J. M., D. M. Vandergucht & J. J. Hudson, 2011. Disruption of planktonic phosphorus cycling by ultraviolet radiation. Hydrobiologia 665: 205–217.CrossRefGoogle Scholar
  30. Scully, N. M., L. J. Tranvik & W. J. Cooper, 2003. Photochemical effects on the interaction of enzymes and dissolved organic matter in natural waters. Limnology and Oceanography 48: 1818–1824.CrossRefGoogle Scholar
  31. Stainton, M. P., M. J. Capel & F. A. J. Armstrong, 1974. The chemical analysis of fresh water. Fisheries Research Board of Canada 25: 35–37.Google Scholar
  32. Stedmon, C. A., S. Markager, L. Tranvik, L. Kronberg, T. Slätis & W. Martinsen, 2007. Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Marine Chemistry 104: 227–240.CrossRefGoogle Scholar
  33. Stepanauskas, R., N. O. G. Jørgensen, O. R. Eigaard, A. Zvikas, L. Tranvik & L. Leonardson, 2002. Summer inputs of riverine nutrients to the Baltic Sea: bioavailability and eutrophication relevance. Ecological Monographs 72: 579–597.CrossRefGoogle Scholar
  34. Vahatalo, A. V., K. Salonen, U. Munster, M. Jarvinen & R. G. Wetzel, 2003. Photochemical transformation of allochthonous organic matter provides bioavailable nutrients in a humic lake. Archiv fur Hydrobiologie 156: 287–314.CrossRefGoogle Scholar
  35. Wang, W., M. A. Tarr, T. S. Bianchi & E. Engelhaupt, 2000. Ammonia photoproduction from aquatic humic and colloidal matter. Aquatic Geochemistry 6: 275–292.CrossRefGoogle Scholar
  36. Wiegner, T. N. & S. P. Seitzinger, 2001. Photochemical and microbial degradation of external dissolved organic matter inputs to rivers. Aquatic Microbial Ecology 24: 27–40.CrossRefGoogle Scholar
  37. Waiser, M. J. & R. D. Robarts, 2000. Changes in the composition and reactivity of allochthonous DOM in a prairie saline lake. Limnology and Oceanography 45: 763–774.CrossRefGoogle Scholar
  38. Wetzel, R. G., 2001. Limnology: lake and river ecosystems. Academic Press, San Diego.Google Scholar
  39. White, E. M., P. P. Vaughan & R. G. Zepp, 2003. Role of the photo-Fenton reaction in the production of hydroxyl radicals and photobleaching of colored dissolved organic matter in a coastal river of the southeastern United States. Aquatic Sciences 65: 402–414.CrossRefGoogle Scholar
  40. Zar, J. H., 1999. Biostatistical Analysis. Prentice-Hall, London.Google Scholar
  41. Zellner, R., M. Exner & H. Herrmann, 1990. Absolute OH quantum yields in the laser photolysis of nitrate, nitrite and dissolved H2O2 at 308 and 351 nm in the temperature-range 278–353 K. Journal of Atmospheric Chemistry 10: 411–425.CrossRefGoogle Scholar
  42. Zepp, R. G., B. C. Faust & J. Hoigne, 1992. Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen-peroxide—the photo-Fenton reaction. Environmental Science and Technology 26: 313–319.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sereda Jeff
    • 1
  • Kristine Hunter
    • 1
  • David Vandergucht
    • 1
  • Jeff Hudson
    • 1
  1. 1.University of SaskatchewanSaskatoonCanada

Personalised recommendations