, Volume 693, Issue 1, pp 39–53 | Cite as

Hydroclimatic and hydrochemical controls on Plecoptera diversity and distribution in northern freshwater ecosystems

  • Laura M. KruitbosEmail author
  • Doerthe Tetzlaff
  • Chris Soulsby
  • Jim Buttle
  • Sean K. Carey
  • Hjalmar Laudon
  • Jeffrey J. McDonnell
  • Kevin McGuire
  • Jan Seibert
  • Richard Cunjak
  • Jamie Shanley
Primary Research Paper


Freshwater ecosystems in the mid- to upper-latitudes of the northern hemisphere are particularly vulnerable to the impact of climate change as slight changes in air temperature can alter the form, timing, and magnitude of precipitation and consequent influence of snowmelt on streamflow dynamics. Here, we examine the effects of hydro-climate, flow regime, and hydrochemistry on Plecoptera (stonefly) alpha (α) diversity and distribution in northern freshwater ecosystems. We characterized the hydroclimatic regime of seven catchments spanning a climatic gradient across the northern temperate region and compared them with estimates of Plecoptera genera richness. By a space-for-time substitution, we assessed how warmer temperatures and altered flow regimes may influence Plecoptera alpha diversity and composition at the genus level. Our results show wide hydroclimatic variability among sites, including differences in temporal streamflow dynamics and temperature response. Principal component analysis showed that Plecoptera genera richness was positively correlated with catchment relief (m), mean and median annual air temperature (°C), and streamflow. These results provide a preliminary insight into how hydroclimatic change, particularly in terms of increased air temperature and altered streamflow regimes, may create future conditions more favorable to some Plecopteras in northern catchments.


Catchment inter-comparison Northern temperate regions Hydroclimatic Streamflow Plecoptera Alpha diversity Climate change 



We thank the Leverhulme Trust for funding the North-Watch project ( This paper evolved from discussions at an international workshop titled “Hydroecological responses to climate change in northern catchments” which was held in Aviemore, Scotland, 29 August to 1 September, 2010. We thank Klement Tockner (Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin), Philip Wookey (University of Stirling), Angela Gurnell (Queen Mary, University of London), Iain Malcolm and Phil Bacon (Marine Scotland) who participated in this workshop and contributed to presentations and discussions valuable to this work. We would also like to thank Nikolai Friberg (Aarhus University, National Environmental Research Institute) for his time and useful comments he provided to this manuscript. We are also grateful to two anonymous referees for their valuable suggestions, Alison Sandison for the preparation of the map, and Alan Herlihy and Tina Garland (Oregon State University) for their assistance in providing us with data for Mack Creek, HJ Andrews. This paper represents contribution number 120 of the Catamaran Brook Research Project.

Supplementary material

10750_2012_1085_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)


  1. Anderson, N. H., 1992. Influence of disturbance on insect communities in Pacific Northwest streams. Hydrobiologia 248: 79–92.CrossRefGoogle Scholar
  2. Barnett, T. P., J. C. Adam & D. P. Lettenmaier, 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438: 303–309.PubMedCrossRefGoogle Scholar
  3. Baumann, R. W., 1979. Nearctic stonefly genera as indicators of ecological parameters (Plecoptera: Insecta). Great Basin Naturalist 39: 241–244.Google Scholar
  4. Bayfield, N. G. & A. J. Nolan, 1998. Vegetation and soils of the Allt a’ Mharcaidh catchment, Cairngorm mountains. Scottish Geographical Magazine 114: 18–21.CrossRefGoogle Scholar
  5. Bishop, K., H. Laudon & S. Köhler, 2000. Separating the natural and anthropogenic components of spring flood pH decline: a method for areas that are not chronically acidified. Water Resources Research 31: 1873–1889.CrossRefGoogle Scholar
  6. Briers, R. A., H. M. Cariss & J. H. R. Gee, 2002. Dispersal of adult stoneflies (Plecoptera) from upland streams draining catchments with contrasting land-use. Archiv fur Hydrobiology 155: 627–644.Google Scholar
  7. Brittain, J. E., 1990. Life history strategies in Ephemeroptera and Plecoptera. In Campbell, I. C. (ed.), Mayflies and Stoneflies: Life History and Biology. Kluwer Academic Publishers, Dordrecht, The Netherlands: 1–12.CrossRefGoogle Scholar
  8. Buffam, I., H. Laudon, J. Temnerud, C.-M. Mörth & K. Bishop, 2007. Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. Journal of Geophysical Research 112: 1–11.CrossRefGoogle Scholar
  9. Bunn, S. E. & A. G. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.PubMedCrossRefGoogle Scholar
  10. Burgmer, T., H. Hillebrand & M. Pfenninger, 2007. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151: 93–103.PubMedCrossRefGoogle Scholar
  11. Carey, S. K., D. Tetzlaff, J. Seibert, C. Soulsby, J. Buttle, H. Laudon, J. McDonnell, K. McGuire, D. Caissie, J. Shanley, M. Kennedy, K. Devito & J. W. Pomeroy, 2010. Inter-comparison of hydro-climatic regimes across northern catchments: synchronicity, resistance and resilience. Hydrological Processes 24: 3591–3602.CrossRefGoogle Scholar
  12. Carter, J. L. & S. V. Fend, 2001. Inter-annual changes in the benthic community structure of riffles and pools in reaches of contrasting gradient. Hydrobiologia 459: 187–200.CrossRefGoogle Scholar
  13. Clarke, A., 1996. The influence of climate change on the distribution and evolution of organisms. In Johnston, I. A. & A. F. Bennett (eds), Animals and Temperature: Phenotypic and Evolutionary Adaptation, Vol. 59. Society for Experimental Biology Seminar Series. Cambridge University Press, Cambridge, UK: 375–407.Google Scholar
  14. Clausen, B. & B. J. F. Biggs, 2000. Flow variables for ecological studies in temperate streams: groupings based on covariance. Journal of Hydrology 237: 184–197.CrossRefGoogle Scholar
  15. Dangles, O., B. Malmqvist & H. Laudon, 2004. Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. Oikos 104: 149–155.CrossRefGoogle Scholar
  16. Dewson, Z. S., A. B. W. James & R. G. Death, 2007. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society 26: 401–415.CrossRefGoogle Scholar
  17. Easterling, D. R., B. Horton, P. D. Jones, T. C. Peterson, T. R. Karl, D. E. Parker, M. J. Salinger, V. Razuvayev, N. Plummer, P. Jamason & C. K. Folland, 1997. Maximum and minimum temperature trends for the globe. Science 277: 364–367.CrossRefGoogle Scholar
  18. Eimers, M. C., S. A. Watmough & J. M. Buttle, 2008. Long-term trends in dissolved organic carbon concentration: a cautionary note. Biogeochemistry 87: 71–81.CrossRefGoogle Scholar
  19. Evans, C., D. Monteith, B. Beaumont, R. Flower & J. Winterbottom, 2000. Site summaries. In Monteith, D. T. & C. D. Evans (eds), UK Acid Waters Monitoring Network: 10 Year Report. Analysis and Interpretation of Results, Chap 4, April 1988–March 1998. ENSIS Publishing. London.Google Scholar
  20. Fochetti, R. & J. M. Tierno de Figueroa, 2008. Global diversity of stoneflies (Plecoptera; Insecta) in freshwater. Hydrobiologia 595: 365–377.CrossRefGoogle Scholar
  21. Foden, W., G. Mace, J.-C. Vié, A. Angulo, S. Butchart, L. DeVantier, H. Dublin, A. Gutsche, S. Stuart & E. Turak, 2008. Species susceptibility to climate change impacts. In Vié, J.-C., C. Hilton-Taylor & S. N. Stuart (eds), The 2008 Review of the IUCN Red List of Threatened Species. IUCN, Gland, Switzerland.Google Scholar
  22. Fukami, T. & D. A. Wardle, 2005. Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proceedings of the Royal Society B 272: 2105–2115.PubMedCrossRefGoogle Scholar
  23. Giberson, D. J. & H. L. Garnett, 1996. Species composition, distribution, and summer emergence phenology of stoneflies (Insecta: Plecoptera) from Catamaran Brook, New Brunswick. Canadian Journal of Zoology 74: 1260–1267.CrossRefGoogle Scholar
  24. Grant, J. D., 2008. The significance of groundwater-surface water interactions of hyporehic physico-chemistry and stream ecology in two Scottish mountain rivers. PhD theses, University of Aberdeen.Google Scholar
  25. Helešic, J., 2001. Nonparametric evaluation of environmental parameters determining the occurrence of stonefly larvae (Plecoptera) in streams. Aquatic Sciences 63: 490–501.CrossRefGoogle Scholar
  26. Helliwell, R. C., C. Soulsby, R. C. Ferrier, A. Jenkins & R. Harriman, 1998. Influence of snow on the hydrology and hydrochemistry of the Allt a’ Mharcaidh, Cairngorm mountains, Scotland. The Science of the Total Environment 217: 59–70.CrossRefGoogle Scholar
  27. Herbst, D. B. & S. D. Cooper, 2010. Before and after the deluge: rain on snow flooding effects on aquatic invertebrate communities of small streams in the Sierra Nevada, California. Journal of the North American Benthological Society 29: 1354–1366.CrossRefGoogle Scholar
  28. Hodgkins, G. A. & R. W. Dudley, 2006. Changes in the timing of winter-spring streamflows in eastern North America, 1913–2002. Geophysical Research Letters 33: 1–5.CrossRefGoogle Scholar
  29. Holt, R. D., 2003. On the evolutionary ecology of species’ ranges. Evolutionary Ecology Research 5: 159–178.Google Scholar
  30. Houseman, R. M. & R. W. Baumann, 1997. Zoogeographic affinities of the stoneflies (Plecoptera) of the Raft River mountains, Utah. Great Basin Naturalist 57: 209–219.Google Scholar
  31. Hrachowitz, M., C. Soulsby, D. Tetzlaff & I. A. Malcolm, 2010a. Gamma distribution models for transit time estimation in catchments: physical interpretation of parameters and implications for time-variant transit time assessment. Water Resources Research 46: W10536.CrossRefGoogle Scholar
  32. Hrachowitz, M., C. Soulsby, C. Imholt, I. A. Malcolm & D. Tetzlaff, 2010b. Thermal regimes in a large upland salmon river: a simple model to identify the influence of landscape controls and climate change on maximum temperatures. Hydrological Processes 24: 3374–3391.CrossRefGoogle Scholar
  33. Intergovernmental Panel on Climate Change (IPCC), 2007. Climate Change 2007: synthesis report. In Core Writing Team, R. K. Pachauri & A. Reisinger (eds), Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland: 104 pp.Google Scholar
  34. Korte, T., 2010. Current and substrate preferences of benthic invertebrates in the rivers of the Hindu Kush-Himalayan region as indicators of hydromorphological degradation. Hydrobiologia 651: 77–91.CrossRefGoogle Scholar
  35. Kundzewicz, Z. W., 2008. Climate change impacts on the hydrological cycle. Ecohydrology & Hydrobiology 8: 195–203.CrossRefGoogle Scholar
  36. Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.CrossRefGoogle Scholar
  37. Landres, P. B., P. Morgan & F. J. Swanson, 1999. Overview of the use of natural variability concepts in managing ecological systems. Ecological Applications 9: 1179–1188.Google Scholar
  38. Langan, S., L. Donald, M. Donaghy, D. Hay & C. Soulsby, 2001. Variation in river water temperature in a Scottish highland stream over a 30 year period. Science of the Total Environment 265: 199–212.Google Scholar
  39. Lepori, F. & N. Hjerdt, 2006. Disturbance and aquatic biodiversity: reconciling contrasting views. BioScience 10: 809–818.CrossRefGoogle Scholar
  40. Li, J., A. Herlihy, W. Greth, P. Kaufmann, S. Gregory, S. Urquhart & D. P. Larsen, 2001. Variability in stream macroinvertebrates at multiple spatial scales. Freshwater Biology 46: 87–97.Google Scholar
  41. Mackay, R. J. & K. E. Kersey, 1985. A preliminary study of aquatic insect communities and leaf decomposition in acid streams near Dorset, Ontario. Hydrobiologia 122: 3–11.CrossRefGoogle Scholar
  42. Malcolm, I. A., C. Gibbins, R. J. Fryer, J. Keay, D. Tetzlaff & C. Soulsby, 2012. The influence of forestry on acidification and recovery: insights from long-term hydrochemical and invertebrate data. Ecological Indicators (in press).Google Scholar
  43. Malcolm, I. A., C. Soulsby, D. M. Hannah, P. J. Bacon, D. Tetzlaff & A. F. Youngson, 2008. The influence of riparian woodland on stream temperatures: implications for juvenile salmonid growth. Hydrological Processes 22: 968–979.CrossRefGoogle Scholar
  44. Malmqvist, B. & M. Mäki, 1994. Benthic macroinvertebrate assemblages in north Swedish streams: environmental relationships. Ecography 17: 9–16.CrossRefGoogle Scholar
  45. Mérigoux, S., N. Lamouroux, J.-M. Olivier & S. Dolédec, 2009. Invertebrate hydraulic preferences and predicted impacts of changes in discharge in a large river. Freshwater Biology 54: 1343–1356.CrossRefGoogle Scholar
  46. Monk, W. A., P. J. Wood, D. M. Hannah, D. A. Wilson, C. A. Extence & R. P. Chadd, 2006. Flow variability and microinvertebrate community response within riverine systems. River Research & Applications 22: 595–615.CrossRefGoogle Scholar
  47. Monteith, D. T., A. G. Hildrew, R. J. Flower, P. J. Raven, W. R. B. Beaumont, P. Collen, A. M. Kreiser, E. M. Shilland & J. H. Winterbottom, 2005. Biological responses to the chemical recovery of acidified fresh waters in the UK. Environmental Pollution 137: 83–101.PubMedCrossRefGoogle Scholar
  48. Newell, R. L., R. W. Baumann & J. A. Stanford, 2006. Stoneflies of Glacier National Park and Flathead River basin, Montana. In Hauer, F. R., J. A. Stanford & R. L. Newell (eds), International Advances in the Ecology, Zoogeography, and Systematics of Mayflies and Stoneflies. Entomology, Vol. 128. University of California Press, Berkeley: 173–186.Google Scholar
  49. Økland, J. & K. A. Økland, 1986. The effects of acid deposition on benthic animals in lakes and streams. Experientia 42: 471–486.CrossRefGoogle Scholar
  50. Pastuchová, Z., M. Lehotský & A. Grešková, 2008. Influence of morphohydraulic habitat structure on invertebrate communities (Ephemeroptera, Plecoptera and Trichoptera). Biologia 63: 720–729.CrossRefGoogle Scholar
  51. Petrin, Z., B. McKie, I. Buffam, H. Laudon & B. Malmqvist, 2007. Landscape-controlled chemistry variation affects communities and ecosystem function in head-water streams. Canadian Journal of Fisheries and Aquatic Sciences 64: 1563–1572.CrossRefGoogle Scholar
  52. Petts, G. E., 2000. A perspective on the abiotic processes sustaining the ecological integrity of running waters. Hydrobiologia 422: 15–27.CrossRefGoogle Scholar
  53. Poff, N. L. & J. D. Allan, 1995. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76: 606–627.CrossRefGoogle Scholar
  54. Poff, N. L. & J. V. Ward, 1989. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences 46: 1805–1818.CrossRefGoogle Scholar
  55. Poff, N. L. & J. V. Ward, 1990. Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management 14: 629–645.CrossRefGoogle Scholar
  56. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime: a paradigm for river conservation and restoration. BioScience 47: 769–784.CrossRefGoogle Scholar
  57. Poff, N. L., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. PNAS 104: 5732–5737.PubMedCrossRefGoogle Scholar
  58. Power, M. E., R. J. Stout, C. E. Cushing, P. P. Harper, F. R. Hauer, W. J. Matthews, P. B. Moyle, B. Statzner & I. R. Wais De Badgan, 1988. Biotic and abiotic controls in river and stream communities. Journal of the North American Benthological Society 7: 456–479.CrossRefGoogle Scholar
  59. Prowse, T. D., C. Furgal, F. J. Wrona & J. D. Reist, 2009. Implications of climate change for northern Canada: freshwater, marine and terrestrial ecosystems. Ambio 38(5): 282–289.PubMedCrossRefGoogle Scholar
  60. Prowse, T. D., R. Shrestha, B. Bonsal & Y. Dibike, 2010. Changing spring air-temperature gradients along large northern rivers: implications for severity of river-ice floods. Geophysical Research Letters 37: L19706.CrossRefGoogle Scholar
  61. Puckridge, J. T., F. Sheldon, K. F. Walker & A. J. Boulton, 1998. Flow variability and the ecology of large rivers. Marine & Freshwater Research 49: 55–72.CrossRefGoogle Scholar
  62. Robins, N. S., 1990. Hydrogeology of Scotland. HMSO, London.Google Scholar
  63. Roque, F. O., L. S. Lecci, T. Siqueira & C. G. Froehlich, 2008. Using environmental and spatial filters to explain stonefly occurrences in southeastern Brazilian streams: implications for biomonitoring. Acta Limnologica Brasiliensia 20: 35–44.Google Scholar
  64. Rosemond, A. D., S. R. Reice, J. W. Elwood & P. J. Mulholland, 1992. The effects of stream acidity on benthic invertebrates communities in the south-eastern United States. Freshwater Biology 27: 193–209.CrossRefGoogle Scholar
  65. Sheldon, A. L. & M. L. Warren Jr., 2009. Filters and templates: stonefly (Plecoptera) richness in Ouachita Mountains streams, U.S.A. Freshwater Biology 54: 943–956.CrossRefGoogle Scholar
  66. Soulsby, C., D. Turnbull, D. Hirst, S. J. Langan & R. Owen, 1997. Reversibility of stream acidification in the Cairngorm region of Scotland. Journal of Hydrology 195: 291–311.CrossRefGoogle Scholar
  67. Soulsby, C., D. Tetzlaff, P. Rodgers, S. Dunn & S. Waldron, 2006. Runoff processes, streamwater residence times and controlling landscape characteristics in a mesoscale catchment: an initial assessment. Journal of Hydrology 325: 197–221.CrossRefGoogle Scholar
  68. Stenseth, N. C., A. Mysterud, G. Ottersen, J. W. Hurrell, K.-S. Chan & M. Lima, 2002. Ecological effects of climate fluctuations. Science 297: 1292–1296.PubMedCrossRefGoogle Scholar
  69. Tetzlaff, D., C. Soulsby, S. Waldron, I. A. Malcolm, P. J. Bacon, S. M. Dunn & A. Lilly, 2007. Conceptualisation of runoff processes using GIS and tracers in a nested mesoscale catchment. Hydrological Processes 21: 1289–1307.CrossRefGoogle Scholar
  70. Tetzlaff, D., J. J. McDonnell, S. Uhlenbrook, K. J. McGuire, P. W. Bogaart, F. Naef, A. J. Baird, S. M. Dunn & C. Soulsby, 2008. Conceptualising catchment processes: simply too complex? Hydrological Processes 22: 1727–1730.CrossRefGoogle Scholar
  71. Tetzlaff, D., J. Seibert, K. J. McGuire, H. Laudon, D. A. Burns, S. M. Dunn & C. Soulsby, 2009. How does landscape structure influence catchment transit times across different geomorphic provinces? Hydrological Processes 23: 945–953.CrossRefGoogle Scholar
  72. Tierno de Figueroa, J. M., M. J. López-Rodríguez, A. Lorenz, W. Graf, A. Schmidt-Kloiber & D. Hering, 2010. Vulnerable taxa of European Plecoptera (Insecta) in the context of climate change. Biodiversity and Conservation 19: 1269–1277.CrossRefGoogle Scholar
  73. Tixier, G. & F. Guérold, 2005. Plecoptera response to acidification in several headwater streams in the Vosges Mountains (northeastern France). Biodiversity and Conservation 14: 1525–1539.CrossRefGoogle Scholar
  74. Townsend, C. R., M. R. Scarsbrook & S. Dolédec, 1997. The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnology and Oceanography 42: 938–949.CrossRefGoogle Scholar
  75. Vincent, W. F. & R. Pienitz, 1996. Sensitivity of high-latitude freshwater ecosystems to global change: temperature and solar ultraviolet radiation. Geoscience Canada 23: 231–236.Google Scholar
  76. Voelz, N. J. & N. J. McArthur, 2000. An exploration of factors influencing lotic insect species richness. Biodiversity and Conservation 9: 1543–1570.CrossRefGoogle Scholar
  77. Vrba, J., J. Kopáček, J. Fott, L. Kohout, L. Nedbalova, M. Pražákova, T. Soldán & J. Schaumburg, 2003. Long-term studies (1871–2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe). The Science of the Total Environment 310: 73–85.PubMedCrossRefGoogle Scholar
  78. Wagener, T., M. Sivapalan, P. A. Troch, B. L. McGlynn, C. J. Harman, H. V. Gupta, P. Kumar, P. S. C. Rao, N. B. Basu & J. S. Wilson, 2010. The future of hydrology: an evolving science for a changing world. Water Resources Research 46: W05301.CrossRefGoogle Scholar
  79. Whittaker, R. H., 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.CrossRefGoogle Scholar
  80. Zalewski, M., 2002. Ecohydrology – the use of ecological and hydrological processes for sustainable management of water resources. Hydrological Sciences 47: 823–832.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Laura M. Kruitbos
    • 1
    Email author
  • Doerthe Tetzlaff
    • 1
  • Chris Soulsby
    • 1
  • Jim Buttle
    • 2
  • Sean K. Carey
    • 3
  • Hjalmar Laudon
    • 4
  • Jeffrey J. McDonnell
    • 1
    • 5
  • Kevin McGuire
    • 6
  • Jan Seibert
    • 7
    • 8
  • Richard Cunjak
    • 9
  • Jamie Shanley
    • 10
  1. 1.Northern Rivers Institute, School of GeosciencesUniversity of AberdeenAberdeenUK
  2. 2.Department of GeographyTrent UniversityPeterboroughCanada
  3. 3.School of Geography and Earth SciencesMcMaster UniversityHamiltonCanada
  4. 4.Forest Ecology and Management, SLUUmeåSweden
  5. 5.Department of Forest Engineering, Resources and ManagementOregon State UniversityCorvallisUSA
  6. 6.Department of Forest Resources and Environmental Conservation, Virginia Water Resources Research CenterVirginia TechBlacksburgUSA
  7. 7.Department of GeographyUniversity of ZurichZurichSwitzerland
  8. 8.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  9. 9.Canadian Rivers Institute, Department of Biology and the Faculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonCanada
  10. 10.US Geological SurveyRestonUSA

Personalised recommendations