Hydrobiologia

, Volume 691, Issue 1, pp 225–237

Genetic variation of European grayling (Thymallus thymallus) populations in the Western Balkans

  • Saša Marić
  • Belma Kalamujić
  • Aleš Snoj
  • Andrej Razpet
  • Lada Lukić-Bilela
  • Naris Pojskić
  • Simona Sušnik Bajec
Primary Research Paper

Abstract

In order to elucidate genetic composition of European grayling (Thymallus thymallus) populations in the Western Balkans, the partial mitochondrial DNA (mtDNA) control region was sequenced and 12 microsatellite loci genotyped in 14 populations originating from tributaries of the Adriatic and Danube drainages. Eleven mtDNA haplotypes were found, one confined to the Adriatic clade, one to the Alpine group and the rest to the ‘Balkan’ grayling phylogenetic clade. Haplotypes from the Balkan clade were confined to the Danube drainage and constituted two groups: northern group with haplotypes found in the Slovenian part of the Danube drainage, and southern group, consisting from Bosnia–Herzegovina and Montenegro. Substantial genetic distance between northern and southern groups of haplotypes (0.75–1.8%) and well supported divisions within the northern group indicate very structured grayling population within the studied Danube basin that most probably did not evolve due to vicariance but rather as a consequence of multiple colonization waves that might have occurred during the Pleistocene. Furthermore, genetic distance of ~4% between Adriatic and Danube populations’ haplotypes, suggest that their separation occurred in mid-Pliocene. These findings imply a complex colonization pattern of the Western Balkans drainages. Microsatellite data also confirm high genetic diversity in Western Balkans populations of grayling (on average 7.5 alleles per microsatellite locus and Hexp 0.58). Limited stocking activities were detected based on microsatellites and mtDNA data. Regarding current knowledge of grayling phylogeography appropriate management strategies were proposed to preserve unique, autochthonous grayling populations in Western Balkan.

Keywords

European grayling Western Balkans Genetic diversity mtDNA Microsatellites Evolutionary significant units 

Supplementary material

10750_2012_1076_MOESM1_ESM.doc (51 kb)
Supplementary material 1 (DOC 51 kb)

References

  1. Baars, M., E. Mathes, H. Stein & U. Steinhörster, 2001. Die Äsche. Die Neue Brehm-Bücherei, Westarp Wissenschaften, Hohenwarsleben: 640 pp. (in German).Google Scholar
  2. Belkhir, K., P. Borsa, L. Chikhi, N. Raufaste & F. Bonhomme, 1996–2004. GENETIX v. 4.04, Logiciel sous WindowsTM pour la Génétique des Populations. Université Montpellier 2, Laboratoire Génome et Population, Montpellier.Google Scholar
  3. Bowcock, A. M., A. Ruiz-Linares, J. Tomfohrde, E. Minch, J. R. Kidd & L. L. Cavalli-Sforza, 1994. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455–457.PubMedCrossRefGoogle Scholar
  4. Carlstein, M., 2004. Growth and survival of European grayling reared at different stocking densities. Aquaculture International 3: 260–264.CrossRefGoogle Scholar
  5. Clement, M., D. Posada & K. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.PubMedCrossRefGoogle Scholar
  6. Duftner, N., S. Koblmüller, S. Weiss, N. Medgyesy & C. Sturmbauer, 2005. The impact of stocking on the genetic structure of European grayling (Thymallus thymallus, Salmonidae) in two alpine rivers. Hydrobiologia 542: 121–129.CrossRefGoogle Scholar
  7. Evanno, G., S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620.PubMedCrossRefGoogle Scholar
  8. Froufe, E., I. Knizhin, M. T. Koskinen, C. R. Primmer & S. Weiss, 2003a. Identification of reproductively isolated lineages of Amur grayling (Thymallus grubii Dybowski 1869): concordance between phenotypic and genetic variation. Molecular Ecology 12: 2345–2355.PubMedCrossRefGoogle Scholar
  9. Froufe, E., S. Alekseyev, I. Knizhin, P. Alexandrino & S. Weiss, 2003b. Comparative phylogeography of salmonid fishes (Salmonidae) reveals late to post-Pleistocene exchange between three now-disjunct rivers basins in Siberia. Diversity and Distribution 9: 269–282.CrossRefGoogle Scholar
  10. Froufe, E., I. Knizhin & S. Weiss, 2005. Phylogenetic analysis of the genus Thymallus (grayling) based on mtDNA control region and ATPase 6 genes, with inferences on control region constraints and broad-scale Eurasian phylogeography. Molecular Phylogenetics and Evolution 34: 106–117.PubMedCrossRefGoogle Scholar
  11. Gardiner, R., 2000. The origins and present distribution of grayling. In Broughton, R. (ed.), The Complete Book on Grayling. Robert Hale Publishers, London: 15–22.Google Scholar
  12. Gibbard, P. & T. van Kolfschoten, 2004. The Pleistocene and Holocene epochs. In Gradstein, F. M., J. G. Ogg & A. G. Smith (eds), A Geologic Time Scale. Cambridge University Press, Cambridge: 441–452. ISBN 0521781426.Google Scholar
  13. Goudet, J., 2002. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 15 October 2009.
  14. Gum, B., 2007. Genetic Characterisation of European Grayling (Thymallus thymallus) Populations: Implications for Conservation and Management. Dissertation, Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, TU München: 167 pp.Google Scholar
  15. Gum, B., R. Gross, O. Rottmann, W. Schröder & R. Kühn, 2003. Microsatellite variation in Bavarian populations of European grayling (Thymallus thymallus): implications for conservation. Conservation Genetics 4: 659–672.CrossRefGoogle Scholar
  16. Gum, B., R. Gross & R. Kuehn, 2005. Mitochondrial and nuclear DNA phylogeography of European grayling (Thymallus thymallus): evidence for secondary contact zones in central Europe. Molecular Ecology 14: 1707–1725.PubMedCrossRefGoogle Scholar
  17. Gum, B., R. Gross & J. Geist, 2009. Conservation genetics and management implications for European grayling, Thymallus thymallus: synthesis of phylogeography and population genetics. Fisheries Management and Ecology 16: 37–51.CrossRefGoogle Scholar
  18. Heggenes, J., T. Qvenild, M. D. Stamford & E. B. Taylor, 2006. Genetic structure in relation to movements in wild European grayling (Thymallus thymallus) in three Norwegian rivers. Canadian Journal of Fisheries and Aquatic Sciences 63: 1309–1319.CrossRefGoogle Scholar
  19. Janković, D. 1960. Sistematika i ekologija lipljena (Thymallus thymallus L.) u Jugoslaviji, Vol. 7. Biološki Institut, Beograd: 145 pp.Google Scholar
  20. Jesenšek, D. & S. Šumer, 2004. Adriatic grayling (Thymallus thymallus, Linnaeus, 1758) in the Soča River basin, Slovenia: action plan. Ribiška družina/Ente Tutela Pesca del Friuli Venezia Giulia, Tolmin/Udine: 32 pp.Google Scholar
  21. Kalamujić, B., 2008. Molecular-Genetic Diversity of Grayling (Thymallus thymallus L.) Populations in Bosnia and Herzegovina. Master thesis in Bosnian, English summary, Faculty of Science, University of Sarajevo.Google Scholar
  22. Kalamujić, B., N. Pojskić, A. Durmić-Pasić, R. Škrijelj & R. Hadžiselimović, 2007. Genetic diversity of grayling (Thymallus thymallus L.) populations in Bosnia–Herzegovina, Book of abstracts of XII European Congress of Ichthyology, Cavtat, Croatia: 32 pp.Google Scholar
  23. Koskinen, M. T. & C. R. Primmer, 2001. High throughput analysis of 17 microsatellite loci grayling (Thymallus spp. Salmonidae). Conservation Genetics 2: 173–177.CrossRefGoogle Scholar
  24. Koskinen, M. T., E. Ranta, J. Piironen, A. Veselov, S. Titov, T. O. Haugen, J. Nilsson, M. Carlstein & C. R. Primmer, 2000. Genetic lineages and postglacial colonization of grayling (Thymallus thymallus, Salmonidae) in Europe, as revealed by mitochondrial DNA analyses. Molecular Ecology 9: 1609–1624.PubMedCrossRefGoogle Scholar
  25. Koskinen, M. T., J. Piironen & C. R. Primmer, 2002a. Genetic assessment of spatiotemporal evolutionary relationships and stocking effects in grayling (Thymallus thymallus, Salmonidae). Ecology Letters 5: 193–205.CrossRefGoogle Scholar
  26. Koskinen, M. T., J. Nilsson, A. Veselov, A. G. Potutkin, E. Ranta & C. R. Primmer, 2002b. Microsatellite data resolve phylogeographic patterns in European grayling, Thymallus thymallus, Salmonidae. Heredity 88: 391–402.PubMedCrossRefGoogle Scholar
  27. Koskinen, M. T., I. Knizhin, C. R. Primmer, C. Schlötterer & S. Weiss, 2002c. Mitochondrial and nuclear DNA phylogeography of Thymallus spp. (grayling) provides evidence of ice-age mediated environmental perturbations in the world’s oldest body of freshwater, Lake Baikal. Molecular Ecology 11: 2599–2611.PubMedCrossRefGoogle Scholar
  28. Kumar, S., K. Tamura, I. B. Jakobsen & M. Nei, 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244–1245.PubMedCrossRefGoogle Scholar
  29. Langella, O., 2002. Populations 1.2.28. Logiciel de génétique des populations. Laboratoire Populations, génétique et évolution, CNRS UPR 9034, Gif-sur-Yvette. http://www.cnrs-gif.fr/pge/. Accessed 10 October 2009.
  30. Marić, S., A. Razpet, V. Nikolić & P. Simonović, 2011. Genetic differentiation of European grayling (Thymallus thymallus) populations in Serbia, based on mitochondrial and nuclear DNA analyses. Genetics Selection Evolution 43: 2.CrossRefGoogle Scholar
  31. Moritz, C., 1994. Defining evolutionary significant units for conservation. Trends in Ecology and Evolution 9: 373–375.PubMedCrossRefGoogle Scholar
  32. Northcote, T. G., 1995. Comparative biology and management of Arctic and European grayling (Salmonidae, Thymallus). Reviews in Fish Biology and Fisheries 5: 141–194.CrossRefGoogle Scholar
  33. Ovidio, M., D. Parkinson, D. Sonny & J. C. Philippart, 2004. Spawning movements of the European grayling Thymallus thymallus in River Aisne. Folia Zoologica 53: 87–98.Google Scholar
  34. Penck, A. & E. Brückner, 1909. Die Alpen im Eiszeitalter. Taunitz, Leipzig: 1199 pp.Google Scholar
  35. Persat, H., 1996. Threatened populations and conservation of European grayling, Thymallus thymallus (L., 1758). In Kirchhofer, A. & D. Hefti (eds), Conservation of Endangered Freshwater Fish in Europe. Birkhauser Verlag AG, Basel: 233–247.CrossRefGoogle Scholar
  36. Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.PubMedCrossRefGoogle Scholar
  37. Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedGoogle Scholar
  38. Rozas, J., J. C. Sánchez-Delbarrio, X. Messeguer & R. Rozas, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.PubMedCrossRefGoogle Scholar
  39. Snoj, A., S. Sušnik, J. Pohar & P. Dovč, 1999. The first microsatellite marker (BFRO 004) for grayling, informative for its Adriatic population. Animal Genetics 30: 74–75.PubMedCrossRefGoogle Scholar
  40. Sušnik, S., A. Snoj & P. Dovč, 1999a. Microsatellites in grayling (Thymallus thymallus): comparison of two geographically remote populations from the Danubian and Adriatic river basin in Slovenia. Molecular Ecology 8: 1756–1758.PubMedCrossRefGoogle Scholar
  41. Sušnik, S., A. Snoj & P. Dovč, 1999b. A new set of microsatellite markers for grayling: BFRO014, BFRO015, BFRO016, BFRO017 and BFRO018. Animal Genetics 30: 478.PubMedGoogle Scholar
  42. Sušnik, S., A. Snoj, D. Jesenšek & P. Dovč, 2000. Microsatellite DNA markers (BFRO010 and BFRO011) for grayling. Journal of Animal Science 78: 488–489.PubMedGoogle Scholar
  43. Sušnik, S., A. Snoj & P. Dovč, 2001. Evolutionary distinctness of grayling (Thymallus thymallus) inhabiting the Adriatic river system, as based on mtDNA variation. Biological Journal of Linnean Society 74: 375–385.Google Scholar
  44. Sušnik, S., P. Berrebi, P. Dovč, M. M. Hansen & A. Snoj, 2004. Genetic introgression between wild and stocked salmonids and the prospects for using molecular markers in population rehabilitation: the case of the Adriatic grayling (Thymallus thymallus L. 1785). Heredity 93: 273–282.PubMedCrossRefGoogle Scholar
  45. Swofford, D. L., 2000. PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods). b-VERSION 4.0. Sinauer Associates, Sunderland, MA.Google Scholar
  46. Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4637–4680.CrossRefGoogle Scholar
  47. Uiblein, F., A. Jagsch, W. Honsig-Erlenburg & S. Weiss, 2001. Status, habitat use, and vulnerability of the European grayling in Austrian waters. Journal of Fish Biology 59: 223–247.Google Scholar
  48. Vähä, J. P., J. Erkinaro, E. Niemela & C. R. Primmer, 2007. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Molecular Ecology 16: 2638–2654.PubMedCrossRefGoogle Scholar
  49. Waples, R. S., 1991. Pacific Salmon, Oncorhynchus spp. and the definition of species under the endangered species act. Marine Fisheries Review 53: 11–22.Google Scholar
  50. Weiss, S., H. Persat, R. Eppe, C. Schlötterer & F. Uiblein, 2002. Complex patterns of colonization and refugia revealed for European grayling Thymallus thymallus, based on complete sequencing of the mitochondrial DNA control region. Molecular Ecology 11: 1393–1407.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Saša Marić
    • 1
  • Belma Kalamujić
    • 2
  • Aleš Snoj
    • 3
  • Andrej Razpet
    • 3
  • Lada Lukić-Bilela
    • 2
  • Naris Pojskić
    • 2
  • Simona Sušnik Bajec
    • 3
  1. 1.Institute of Zoology, Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Genetic Engineering and BiotechnologyUniversity of SarajevoSarajevoBosnia and Herzegovina
  3. 3.Department of Animal Science, Biotechnical FacultyUniversity of LjubljanaDomžaleSlovenia

Personalised recommendations