, Volume 691, Issue 1, pp 123–134 | Cite as

Linking genetic assignment tests with telemetry enhances understanding of spawning migration and homing in sea trout Salmo trutta L.

  • Johan ÖstergrenEmail author
  • Jan Nilsson
  • Hans Lundqvist
Primary Research Paper


Telemetric and molecular techniques are powerful tools for investigating patterns of species dispersal, habitat use, and reproductive behavior. Yet, these methods are rarely combined when studying spatial structures of migrating animals. This study combines migration data with genetic assignment tests of radio-tagged sea trout, Salmo trutta L., in two Swedish rivers. We investigate how the genetic information enhances the interpretation of the telemetry data. Individual gene frequencies of tagged fish are assigned to baseline samples of brown trout collected in tributaries and the main stems. The genetic assignment tests confirm that individuals returned from the sea to their natal stream, but also suggest that some individuals migrated to other than their native habitat. In total, 82% (R. Piteälven) and 37% (R. Vindelälven) of fish that were successfully assigned to a sample in a baseline migrated to an area in the vicinity of the sample location. The difference between rivers is likely due to low genetic differentiation among baseline samples and effects of stocking of fish in the R. Vindelälven. Combining the two techniques enhances understanding of migration behavior, important for conservation and management.


Straying Microsatellite DNA Genetic assignment test Telemetry Salmo trutta 



Helena Königsson and Bo-Sören Wiklund are thanked for technical support. Two anonymous reviewers are thanked for valuable comments on an earlier version of this paper. Vindelälvens fiskeråd, Piteälvens Ekonomiska förening, Vattenfall AB staff in Norrfors, Vattenfall Service Nord AB, are also thanked for their support. The project was financed by the Ministry of Sustainable Development (LIP), EU-fundings Mål 1, and cooperation between the following communities: Arjeplog, Arvidsjaur, Lycksele, Piteå, Sorsele, Vännäs, Vindeln, Älvsbyn and also the County administration in Norr- and Västerbotten and the National Fisheries Board. Further fundings to J. Östergren was received from: Göran Gustafsson stiftelse för natur och miljö i Lappland, Kempestiftelsen, Stiftelsen Carl-Fredrik von Horns fond och Knut och Alice Wallenbergs stiftelse. The handling and tagging procedure was approved by the Swedish Animal Welfare Agency nr: A65-01.


  1. Calles, E. O. & L. A. Greenberg, 2005. Evaluation of nature-like fishways for re-establishing connectivity in fragmented salmonid populations in the River Eman. River Research and Applications 21: 951–960.CrossRefGoogle Scholar
  2. Cooke, S. J., E. B. Thorstad & S. G. Hinch, 2004. Activity and energetics of free-swimming fish: insights from electromyogram telemetry. Fish and Fisheries 5: 21–52.CrossRefGoogle Scholar
  3. Cooke, S. J., S. G. Hinch, A. P. Farrell, D. A. Patterson, K. Miller-Saunders, D. W. Welch, M. R. Donaldson, K. C. Hanson, G. T. Crossin, M. T. Mathes, A. G. Lotto, K. A. Hruska, I. C. Olsson, G. N. Wagner, R. Thomson, R. Hourston, K. K. English, S. Larsson, J. M. Shrimpton & G. Van der Kraak, 2008. Developing a mechanistic understanding of fish migrations by linking telemetry with physiology, behavior, genomics and experimental biology: an interdisciplinary case study on adult Fraser River sockeye salmon. Fisheries 33: 321–338.CrossRefGoogle Scholar
  4. Corley-Smith, G. E., L. Wennerberg, J. A. Schembri, C. J. Lim, K. L. Cooper & B. P. Brandhorst, 2005. Assignment of sockeye salmon (Oncorhynchus nerka) to spawning sites using DNA markers. Marine Biotechnology 7: 440–448.PubMedCrossRefGoogle Scholar
  5. Cornuet, J. M., S. Piry, G. Luikart, A. Estoup & M. Solignac, 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153: 1989–2000.PubMedGoogle Scholar
  6. D’Amelio, S., J. Mucha, R. Mackereth & C. C. Wilson, 2008. Tracking coaster brook trout to their sources: combining telemetry and genetic profiles to determine source populations. North American Journal of Fisheries Management 28: 1343–1349.CrossRefGoogle Scholar
  7. Degerman, E., P. Nyberg & B. Sers, 2001. Havsöringens ekologi. Finfo 2001:10. National Board of Fisheries, Stockholm: 1–122.Google Scholar
  8. Efron, B., 1983. Estimating the error rate of a prediction rule—improvement on cross-validation. Journal of the American Statistical Association 78: 316–331.Google Scholar
  9. Estoup, A., P. Presa, F. Krieg, D. Vaiman & R. Guyomard, 1993. CTn and GTn microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71: 488–496.PubMedCrossRefGoogle Scholar
  10. Finstad, A. G., F. Okland, E. B. Thorstad & T. G. Heggberget, 2005. Comparing upriver spawning migration of Atlantic salmon Salmo salar and sea trout Salmo trutta. Journal of Fish Biology 67: 919–930.CrossRefGoogle Scholar
  11. Hansen, M. M., E. Kenchington & E. E. Nielsen, 2001. Assigning individual fish to populations using microsatellite DNA markers. Fish and Fisheries 2: 93–112.CrossRefGoogle Scholar
  12. Hansen, M. M., D. J. Fraser, K. Meier & K. L. D. Mensberg, 2009. Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines. Molecular Ecology 18: 2549–2562.PubMedCrossRefGoogle Scholar
  13. Hedger, R. D., D. Hatin, J. J. Dodson, F. Martin, D. Fournier, F. Caron & F. G. Whoriskey, 2009. Migration and swimming depth of Atlantic salmon kelts Salmo salar in coastal zone and marine habitats. Marine Ecology-Progress Series 392: 179–192.CrossRefGoogle Scholar
  14. Hilborn, R., T. P. Quinn, D. E. Schindler & D. E. Rogers, 2003. Biocomplexity and fisheries sustainability. Proceedings of the National Academy of Sciences of the United States of America 100: 6564–6568.PubMedCrossRefGoogle Scholar
  15. ICES, 2006. Report of the Baltic Salmon and Trout Assessment Working Group (WGBAST). ICES Headquarters, Copenhagen.Google Scholar
  16. Jepsen, N., E. E. Nielsen & M. Deacon, 2005. Linking individual migratory behaviour of Atlantic salmon to their genetic origin. In Spedicato, M. T., G. Lembo, G. Marmulla (eds), Aquatic telemetry: advances and applications. Proceedings of the Fifth Conference of Fish Telemetry held in Europe, Ustica, Italy, 9–13 June, 2003. FAO/COISPA, Rome: 295.Google Scholar
  17. Jokikokko, E., 2002. Migration of wild and reared Atlantic salmon (Salmo salar L.) in the river Simojoki, northern Finland. Fisheries Research 58: 15–23.CrossRefGoogle Scholar
  18. Jonsson, S., 2001. Stocking of brown trout (Salmo trutta L.): factors affecting survival and growth. Doctoral Thesis, Department of Aquaculture, Swedish University of Agricultural Sciences, Umeå.Google Scholar
  19. Jonsson, B., N. Jonsson & L. P. Hansen, 1990. Does juvenile experience affect migration and spawning of adult Atlantic salmon? Behaviour Ecology and Sociobiology 26: 225–230.CrossRefGoogle Scholar
  20. Jonsson, B., N. Jonsson & L. P. Hansen, 2003. Atlantic salmon straying from the River Imsa. Journal of Fish Biology 62: 641–657.CrossRefGoogle Scholar
  21. Koljonen, M. L., 2006. Annual changes in the proportions of wild and hatchery Atlantic salmon (Salmo salar) caught in the Baltic Sea. ICES Journal of Marine Science 63: 1274–1285.CrossRefGoogle Scholar
  22. Lundqvist, H., P. Rivinoja, K. Leonardsson & S. McKinnell, 2008. Upstream passage problems for wild Atlantic salmon (Salmo salar L.) in a regulated river and its effect on the population. Hydrobiologia 602: 111–127.CrossRefGoogle Scholar
  23. Nilsson, J., J. Östergren, H. Lundqvist & U. Carlsson, 2008. Genetic assessment of Atlantic salmon Salmo salar and sea trout Salmo trutta stocking in a Baltic Sea river. Journal of Fish Biology 73: 1201–1215.CrossRefGoogle Scholar
  24. Nordeng, H. & P. Bratland, 2006. Homing experiments with parr, smolt and residents of anadromous Arctic char Salvelinus alpinus and brown trout Salmo trutta: transplantation between neighbouring river systems. Ecology of Freshwater Fish 15: 488–499.CrossRefGoogle Scholar
  25. O’Reilly, P. T., L. C. Hamilton, S. K. McConnell & J. M. Wright, 1996. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Canadian Journal of Fisheries and Aquatic Science 53: 2292–2298.Google Scholar
  26. Okland, F., J. Erkinaro, K. Moen, E. Niemelae, P. Fiske, R. S. McKinley & E. B. Thorstad, 2001. Return migration of Atlantic salmon in the River Tana: phases of migratory behaviour. Journal of Fish Biology 59: 862–874.CrossRefGoogle Scholar
  27. Östergren, J. & J. Nilsson, 2012. Importance of life-history and landscape characteristics for genetic structure and genetic diversity of brown trout (Salmo trutta L.). Ecology of Freshwater Fish 21: 119–133.CrossRefGoogle Scholar
  28. Östergren, J. & P. Rivinoja, 2008. Overwintering and downstream migration of sea trout (Salmo trutta L.) kelts under regulated flows-northern Sweden. River Research and Applications 24: 551–563.CrossRefGoogle Scholar
  29. Östergren, J., H. Lundqvist & J. Nilsson, 2011. High variability in spawning migration of sea trout Salmo trutta L. in two northern Swedish rivers. Fisheries Management and Ecology 18: 72–82.CrossRefGoogle Scholar
  30. Paetkau, D., W. Calvert, I. Stirling & C. Strobeck, 1995. Microsatellite analysis of population-structure in Canadian polar bears. Molecular Ecology 4: 347–354.PubMedCrossRefGoogle Scholar
  31. Palm, S., J. Dannewitz, T. Jarvi, E. Petersson, T. Prestegaard & N. Ryman, 2003. Lack of molecular genetic divergence between sea-ranched and wild sea trout (Salmo trutta). Molecular Ecology 12: 2057–2071.PubMedCrossRefGoogle Scholar
  32. Palm, D., F. Lepori & E. Brännäs, 2010. Influence of habitat restoration on post-emergence displacement of brown trout (Salmo trutta L.): a case study in a Northern Swedish stream. River Research and Applications 26: 742–750.Google Scholar
  33. Pella, J. J. & M. Masuda, 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fisheries Bulletin 99: 153–170.Google Scholar
  34. Piry, S., A. Alapetite, J. M. Cornuet, D. Paetkau, L. Baudouin & A. Estoup, 2004. GENECLASS2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity 95: 536–539.PubMedCrossRefGoogle Scholar
  35. Primmer, C. R., M. T. Koskinen & J. Piironen, 2000. The one that did not get away: individual assignment using microsatellite data detects a case of fishing competition fraud. Proceedings of the Royal Society of London Series B-Biological Sciences 267: 1699–1704.CrossRefGoogle Scholar
  36. Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedGoogle Scholar
  37. Quinn, T. P., 1993. A review of homing and straying of wild and hatchery produced salmon. Fisheries Research 18: 29–44.CrossRefGoogle Scholar
  38. Quinn, T. P., 2005. The Behavior and Ecology of Pacific Salmon and Trout. University of Washington Press, Seattle.Google Scholar
  39. Rannala, B. & J. L. Mountain, 1997. Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the United States of America 94: 9197–9201.PubMedCrossRefGoogle Scholar
  40. Raymond, M. & F. Rousset, 1995. An exact test for population differentiation. Evolution 49: 1280–1283.CrossRefGoogle Scholar
  41. Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.CrossRefGoogle Scholar
  42. Rivinoja, P., J. Östergren, K. Leonardsson, H. Lundqvist, J. Kiviloog, L. Bergdahl & L. Brydsten, 2004. Downstream migration of Salmo salar and S. trutta smolts in two regulated northern Swedish rivers. In Fifth International Symposium on Ecohydraulics, Madrid.Google Scholar
  43. Scruton, D. A., R. K. Booth, C. J. Pennell, F. Cubitt, R. S. McKinley & K. D. Clarke, 2007. Conventional and EMG telemetry studies of upstream migration and tailrace attraction of adult Atlantic salmon at a hydroelectric installation on the Exploits River, Newfoundland, Canada. Hydrobiologia 582: 67–79.CrossRefGoogle Scholar
  44. Slettan, A., I. Olsaker & O. Lie, 1995. Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOL417 loci. Animal Genetics 26: 281–282.PubMedGoogle Scholar
  45. Slettan, A., I. Olsaker & O. Lie, 1996. Polymorphic Atlantic salmon, Salmo salar L., microsatellites at the SSOSL438, SSOSL439 and SSOSL444 loci. Animal Genetics 27: 57–64.PubMedCrossRefGoogle Scholar
  46. Spedicato, M. T., T. Lembo & G. Marmulla, 2005. Aquatic telemetry: advances and applications. In Proceedings of the Fifth Conference of Fish Telemetry held in Europe, Utica, Italy, 9–13 June, 2003. FAO/COISPA, Rome: 295.Google Scholar
  47. Stabell, O. B., 1984. Homing and olfaction in salmonids: a critical review with special reference to the Atlantic salmon. Biological reviews of the Cambridge philosophical society 59: 333–388.CrossRefGoogle Scholar
  48. Stuart, T. A., 1957. The migrations and homing behaviour of brown trout (Salmo trutta L.). Freshwater and Salmon Fisheries Research 18: 1–27.Google Scholar
  49. Thorstad, E. B., F. Okland & B. Finstad, 2000. Effects of telemetry transmitters on swimming performance of adult Atlantic salmon. Journal of Fish Biology 57: 531–535.CrossRefGoogle Scholar
  50. Thorstad, E. B., F. Okland, K. Aarestrup & T. G. Heggberget, 2008. Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts. Reviews in Fish Biology and Fisheries 18: 345–371.CrossRefGoogle Scholar
  51. Weir, B. S. & C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population-structure. Evolution 38: 1358–1370.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Johan Östergren
    • 1
    • 2
    Email author
  • Jan Nilsson
    • 2
  • Hans Lundqvist
    • 2
  1. 1.Department of Aquatic Resources, Institute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
  2. 2.Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden

Personalised recommendations