Advertisement

Hydrobiologia

, Volume 690, Issue 1, pp 113–125 | Cite as

Large medusae in surface waters of the Northern California Current: variability in relation to environmental conditions

  • Cynthia L. Suchman
  • Richard D. Brodeur
  • Elizabeth A. Daly
  • Robert L. Emmett
JELLYFISH BLOOMS

Abstract

Blooms of jellyfish around the world have been correlated with climatic variables related to environmental causes. Sizeable populations of large medusae, primarily Chrysaora fuscescens and Aequorea sp., appear annually in shelf waters of the Northeast Pacific Ocean. Previous research has shown that C. fuscescens is abundant seasonally in the inner shelf and exhibits high feeding rates on zooplankton. We examined medusae caught in surface trawls over an 8-year period (2000–2007) using (1) mesoscale surveys sampling 8–10 transects in May, June, and September, and (2) biweekly surveys along two transects from April to August, relating abundance to environmental parameters. C. fuscescens abundances generally peaked in late summer, whereas Aequorea sp. peaked in May or June. General additive models of the mesoscale data indicated that station catches for both species correlated with latitude, temperature, salinity, and distance from shore (and chlorophyll a for Aequorea sp.). Analysis of interannual variability revealed that highest catches of medusae correlated with cool spring–summer conditions, or negative anomalies of the Pacific Decadal Oscillation, and low winter–summer runoff from the Columbia River. Results confirmed our hypothesis of connections between jellyfish populations and regional climate conditions in a region known for strong physical forcing of ecosystem processes.

Keywords

Jellyfish Chrysaora Aequorea Climate Upwelling California Current 

Notes

Acknowledgments

Thanks to the captains and crew of the FV Frosti, FV Ocean Harvester, FV Sea Eagle, FV Piky, RV Miller Freeman, and RV W.E. Ricker, as well as the many seagoing scientists who participated in the fieldwork component of this project. G. Krutzikowsky, C. Morgan, S. Pool, and C. Bucher helped with database management. E. Casillas, J. Field, C. Rice, J. Purcell and two anonymous reviewers provided helpful comments on earlier drafts of the manuscript. This study was funded by the Bonneville Power Administration, the US GLOBEC Northeast Pacific Program, and the Northwest Fisheries Science Center (NOAA). Completion of this manuscript was supported by the National Science Foundation, while the lead author was working at the Foundation. Any opinion, finding, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

  1. Astorga, D., J. Ruiz & L. Prieto, 2012. Ecological aspects of early life stages of Cotylorhiza tuberculata (Scyphozoa: Rhizostomae) affecting its pelagic population success. Hydrobiologia. doi: 10.1007/s10750-012-1036-x.
  2. Barry, S. C. & A. H. Welsh, 2002. Generalized additive modeling and zero inflated count data. Ecological Modeling 157: 179–188.CrossRefGoogle Scholar
  3. Batchelder, H. P., J. A. Barth, M. P. Kosro, P. T. Strub, R. D. Brodeur, W. T. Peterson, C. T. Tynan, M. D. Ohman, L. W. Botsford, T. M. Powell, F. B. Schwing, D. G. Ainley, D. L. Mackas, B. M. Hickey & S. R. Ramp, 2002. The GLOBEC Northeast Pacific California Current System Program. Oceanography 15: 36–47.CrossRefGoogle Scholar
  4. Baxter, E. J., A. W. Walne, J. E. Purcell, R. McAllen & T. K. Doyle, 2010. Identification of jellyfish from Continuous Plankton Recorder samples. Hydrobiologia 645: 193–201.CrossRefGoogle Scholar
  5. Brierley, A. S., D. C. Boyer, B. E. Axelsen, C. P. Lynam, C. A. Sparks, H. J. Boyer & M. J. Gibbons, 2005. Towards the acoustic estimation of jellyfish abundance. Marine Ecology Progress Series 295: 105–111.CrossRefGoogle Scholar
  6. Brodeur, R. D., J. P. Fisher, C. A. Morgan, R. L. Emmett & E. Casillas, 2005. Species composition and community structure of pelagic nekton off Oregon and Washington under variable oceanographic conditions. Marine Ecology Progress Series 298: 41–57.CrossRefGoogle Scholar
  7. Brodeur, R. D., M. B. Decker, L. Ciannelli, J. E. Purcell, N. A. Bond, P. J. Stabeno, E. Acuna & G. L. Hunt, 2008a. Rise and fall of jellyfish in the eastern Bering Sea in relation to climate regime shifts. Progress in Oceanography 77: 103–111.CrossRefGoogle Scholar
  8. Brodeur, R. D., C. L. Suchman, D. Reese, T. Miller & E. Daly, 2008b. Spatial overlap and trophic interactions between fish and large jellyfish in the Northern California Current. Marine Biology 154: 649–659.CrossRefGoogle Scholar
  9. Brodeur, R. D., J. J. Ruzicka & J. H. Steele, 2011. Investigating alternate trophic pathways through gelatinous zooplankton and planktivorous fishes in an upwelling ecosystem using end-to-end models. In Omori, K., X. Guo, N. Yoshie, N. Fujii, I. C. Handoh, A. Isobe & S. Tanabe (eds), Interdisciplinary Studies on Environmental Chemistry – Marine Environmental Modeling & Analysis. TERRAPUB, Tokyo: 57–63.Google Scholar
  10. Buecher, E. & M. J. Gibbons, 2000. Interannual variation in the composition of the assemblages of medusae and ctenophores in St. Helena Bay. Southern Benguela ecosystem. Scientia Marina 64: 123–134.CrossRefGoogle Scholar
  11. Cargo, D. G. & D. R. King, 1990. Forecasting the abundance of the sea nettle, Chrysaora quinquecirrha, in Chesapeake Bay. Estuaries 13: 486–491.CrossRefGoogle Scholar
  12. Checkley, D. M. & J. A. Barth, 2009. Patterns and processes in the California Current System. Progress in Oceanography 83: 49–64.CrossRefGoogle Scholar
  13. Edwards, M. & A. J. Richardson, 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430: 881–884.PubMedCrossRefGoogle Scholar
  14. Emmett, R. L., R. D. Brodeur & P. M. Orton, 2004. The vertical distribution of juvenile salmon (Oncorhynchus spp.) and associated fishes in the Columbia River plume. Fisheries Oceanography 13: 392–402.CrossRefGoogle Scholar
  15. Graham, W. M., F. Pagès & W. M. Hamner, 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451: 199–212.CrossRefGoogle Scholar
  16. Graham, W. M., D. L. Martin & J. C. Martin, 2003. In situ quantification and analysis of large jellyfish using a novel video profiler. Marine Ecology Progress Series 354: 129–140.CrossRefGoogle Scholar
  17. Graham, T. R., J. T. Harvey, S. R. Benson, J. S. Renfree & D. A. Demer, 2010. The acoustic identification and enumeration of scyphozoan jellyfish, prey for leatherback sea turtles (Dermochelys coriacea), off central California. ICES Journal of Marine Science 67: 1739–1748.CrossRefGoogle Scholar
  18. Haddock, S. H. D., 2008. Reconsidering evidence for potential climate-related increases in jellyfish. Limnology and Oceanography 53: 2759–2762.Google Scholar
  19. Hastie, T. J. & R. J. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall, New York: 335 pp.Google Scholar
  20. Hickey, B. M. & N. S. Banas, 2003. Oceanography of the U.S. Pacific Northwest coastal ocean and estuaries with application to coastal ecology. Estuaries 26: 1010–1031.CrossRefGoogle Scholar
  21. Hickey, B. M., et al., 2010. River influences on shelf ecosystems: introduction and synthesis. Journal of Geophysical Research 115: C00B17.CrossRefGoogle Scholar
  22. Holst, S., 2012. Effects of climate warming on strobilation and ephyra production of North Sea scyphozoan jellyfish. Hydrobiologia. doi: 10.1007/s10750-012-1043-y.
  23. Houghton, J. D. R., T. K. Doyle, J. Davenport & G. C. Hays, 2006a. Developing a simple, rapid method for identifying and monitoring jellyfish aggregations from the air. Marine Ecology Progress Series 314: 159–170.CrossRefGoogle Scholar
  24. Houghton, J. D. R., T. K. Doyle, M. W. Wilson, J. Davenport & G. C. Hays, 2006b. Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology 87: 1967–1972.PubMedCrossRefGoogle Scholar
  25. Hsieh, C. & M. D. Ohman, 2006. Biological responses to environmental forcing: the linear tracking window hypothesis. Ecology 87: 1932–1938.PubMedCrossRefGoogle Scholar
  26. Liu, W. C., W. T. Lo, J. E. Purcell & H. H. Chang, 2009. Effects of temperature and light intensity on asexual reproduction of the scyphozoan, Aurelia aurita (L.) in Taiwan. Hydrobiologia 616: 247–258.CrossRefGoogle Scholar
  27. Lynam, C. P., S. J. Hay & A. S. Brierley, 2004. Interannual variability in abundance of North Sea jellyfish and links to the North Atlantic Oscillation. Limnology and Oceanography 49: 637–643.CrossRefGoogle Scholar
  28. Lynam, C. P., M. R. Heath, S. J. Hay & A. S. Brierley, 2005. Evidence for impacts by jellyfish on North Sea herring recruitment. Marine Ecology Progress Series 298: 157–167.CrossRefGoogle Scholar
  29. Lynam, C. P., M. J. Attrill & M. D. Skogen, 2010. Climatic and oceanic influences on the abundance of gelatinous zooplankton in the North Sea. Journal of the Marine Biological Association of the United Kingdom 90: 1153–1159.CrossRefGoogle Scholar
  30. Lynam, C. P., M. K. S. Lilley, T. Bastian, T. K. Doyle, S. E. Beggs & G. C. Hays, 2011. Have jellyfish in the Irish Sea benefited from climate change and overfishing? Global Change Biology 17: 767–782.CrossRefGoogle Scholar
  31. Miglietta, M. P., M. Rossi & R. Collin, 2008. Hydromedusa blooms and upwelling events in the Bay of Panama, Tropical East Pacific. Journal of Plankton Research 30: 783–793.CrossRefGoogle Scholar
  32. Miller, T. W. & R. D. Brodeur, 2007. Diets of and trophic relationships among dominant marine nekton within the Northern California Current ecosystem. Fishery Bulletin 105: 548–559.Google Scholar
  33. Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68.CrossRefGoogle Scholar
  34. Morgan, C. A., A. De Robertis & R. W. Zabel, 2005. Columbia River plume fronts. I. Hydrography, zooplankton distribution, and community composition. Marine Ecology Progress Series 299: 19–31.CrossRefGoogle Scholar
  35. Parsons, T. R. & C. M. Lalli, 2002. Jellyfish population explosions: revisiting a hypothesis of possible causes. La Mer 40: 111–121.Google Scholar
  36. Pauly, D., W. Graham, S. Libralato, L. Morissette & M. L. Deng Palomares, 2009. Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia 616: 67–85.CrossRefGoogle Scholar
  37. Peterson, W. T., 2009. Copepod species richness as an indicator of long-term changes in the coastal ecosystem of the Northern California Current. CalCOFI Reports 50: 73–81.Google Scholar
  38. Peterson, J. O. & W. T. Peterson, 2008. Influence of the Columbia River plume (USA) on the vertical and horizontal distribution of mesozooplankton over the Washington and Oregon shelf. ICES Journal of Marine Science 65: 477–483.CrossRefGoogle Scholar
  39. Purcell, J. E., 2005. Climate effects on formation of jellyfish and ctenophore blooms: a review. Journal of the Marine Biological Association of the United Kingdom 85: 461–476.CrossRefGoogle Scholar
  40. Purcell, J. E., 2007. Environmental effects on asexual reproduction rates of the scyphozoan, Aurelia labiata. Marine Ecology Progress Series 348: 183–196.CrossRefGoogle Scholar
  41. Purcell, J. E., 2009. Extension of methods for jellyfish and ctenophore trophic ecology to large-scale research. Hydrobiologia 206: 23–50.CrossRefGoogle Scholar
  42. Purcell, J. E., 2012. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annual Review of Marine Science 4: 209–235.PubMedCrossRefGoogle Scholar
  43. Purcell, J. E. & M. N. Arai, 2001. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451: 27–44.CrossRefGoogle Scholar
  44. Purcell, J. E. & M. B. Decker, 2005. Effects of climate on relative predation by scyphomedusae and ctenophores on copepods in Chesapeake Bay during 1987–2000. Limnology and Oceanography 50: 376–387.CrossRefGoogle Scholar
  45. Purcell, J. E., S. I. Uye & W. S. Lo, 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350: 153–174.CrossRefGoogle Scholar
  46. Purcell, J. E., D. Atienza, V. Fuentes, A. Olariaga, U. Tilves, C. Colahan & J.-M. Gili, 2012. Temperature effects on asexual reproduction rates of Scyphozoan species from the northwest Mediterranean Sea. Hydrobiologia. doi: 10.1007/s10750-012-1047-7.
  47. Quiñones, J., V. G. Carman, J. Zeballos, S. Purca & H. Mianzan, 2010. Effects of El Niño-driven environmental variability on black turtle migration to Peruvian foraging grounds. Hydrobiologia 645: 69–79.CrossRefGoogle Scholar
  48. Raskoff, K. A., 2001. The impact of El Niño events on populations of mesopelagic hydromedusae. Hydrobiologia 451: 121–129.CrossRefGoogle Scholar
  49. Richardson, A. J., A. Bakun, G. C. Hays & M. J. Gibbons, 2009. The jellyfish joyride: causes, consequences, and management responses to a more gelatinous future. Trends in Ecology & Evolution 24: 312–322.CrossRefGoogle Scholar
  50. Ruzicka, J. J., R. D. Brodeur & T. C. Wainwright, 2007. Seasonal food web models for the Oregon inner-shelf ecosystem: investigating the role of large jellyfish. CalCOFI Reports 48: 106–128.Google Scholar
  51. Samhouri, J. F., P. S. Levin & C. J. Harvey, 2009. Quantitative evaluation of marine ecosystem indicator performance using food web models. Ecosystems 12: 1283–1298.CrossRefGoogle Scholar
  52. Schuyler, Q. & B. K. Sullivan, 1997. Light responses and diel migration of the scyphomedusa Chrysaora quinquecirrha in mesocosms. Journal of Plankton Research 19: 1417–1428.CrossRefGoogle Scholar
  53. Shenker, J. M., 1984. Scyphomedusae in surface waters near the Oregon coast, May–August 1981. Estuarine, Coastal and Shelf Science 19: 619–632.CrossRefGoogle Scholar
  54. Sparks, C., A. S. Brierley, E. Buecher, D. Boyer, B. Axelsen & M. J. Gibbons, 2005. Submersible observations on the daytime vertical distribution of Aequorea forskalea off the west coast of southern Africa. Journal of the Marine Biological Association of the UK 85: 519–522.CrossRefGoogle Scholar
  55. Suchman, C. L. & R. D. Brodeur, 2005. Abundance and distribution of large medusae in surface waters of an upwelling zone off coastal Oregon, USA. Deep Sea Research II 52: 51–72.CrossRefGoogle Scholar
  56. Suchman, C. L., E. A. Daly, J. E. Keister, W. T. Peterson & R. D. Brodeur, 2008. Feeding patterns and predation potential of scyphomedusae in a highly productive upwelling region. Marine Ecology Progress Series 358: 161–172.CrossRefGoogle Scholar
  57. Thein, H., H. Ikeda & S. I. Uye, 2012. The potential role of podocysts in perpetuation of the common jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa) in anthropogenically perturbed coastal waters. Hydrobiologia. doi: 10.1007/s10750-012-1045-9.
  58. Wood, S. N., 2006. Generalized Additive Models: An Introduction with R. Chapman and Hall, New York: 391 pp.Google Scholar
  59. Wood, S. N. & N. H. Augustin, 2002. GAMs with integrated model selection using penalized regression splines and applications to environmental modeling. Ecological Modeling 157: 157–177.CrossRefGoogle Scholar
  60. Wright, D. A. & J. E. Purcell, 1997. Effect of salinity on ionic shifts in mesohaline scyphomedusae, Chrysaora quinquecirrha. Biological Bulletin 192: 332–339.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Cynthia L. Suchman
    • 1
  • Richard D. Brodeur
    • 2
  • Elizabeth A. Daly
    • 3
  • Robert L. Emmett
    • 2
  1. 1.North Pacific Research BoardAnchorageUSA
  2. 2.Northwest Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationNewportUSA
  3. 3.Cooperative Institute for Marine Resources StudiesOregon State UniversityNewportUSA

Personalised recommendations