Hydrobiologia

, Volume 690, Issue 1, pp 227–245 | Cite as

Jelly-falls historic and recent observations: a review to drive future research directions

  • Mario Lebrato
  • Kylie A. Pitt
  • Andrew K. Sweetman
  • Daniel O. B. Jones
  • Joan E. Cartes
  • Andreas Oschlies
  • Robert H. Condon
  • Juan Carlos Molinero
  • Laetitia Adler
  • Christian Gaillard
  • Domingo Lloris
  • David S. M. Billett
JELLYFISH BLOOMS Review Paper

Abstract

The biological pump describes the transport of particulate matter from the sea surface to the ocean’s interior including the seabed. The contribution by gelatinous zooplankton bodies as particulate organic matter (POM) vectors (“jelly-falls”) has been neglected owing to technical and spatiotemporal sampling limitations. Here, we assess the existing evidence on jelly-falls from early ocean observations to present times. The seasonality of jelly-falls indicates that they mostly occur after periods of strong upwelling and/or spring blooms in temperate/subpolar zones and during late spring/early summer. A conceptual model helps to define a jelly-fall based on empirical and field observations of biogeochemical and ecological processes. We then compile and discuss existing strategic and observational oceanographic techniques that could be implemented to further jelly-falls research. Seabed video- and photography-based studies deliver the best results, and the correct use of fishing techniques, such as trawling, could provide comprehensive regional datasets. We conclude by considering the possibility of increased gelatinous biomasses in the future ocean induced by upper ocean processes favouring their populations, thus increasing jelly-POM downward transport. We suggest that this could provide a “natural compensation” for predicted losses in pelagic POM with respect to fuelling benthic ecosystems.

Keywords

Biological pump Gelatinous zooplankton Jelly-fall Organic matter 

Notes

Acknowledgments

We are grateful to the scientific and environmental ROV partnership using existing industrial technology project (SERPENT) for enabling access to data off west Africa and in the deep Norwegian Sea. We thank the following contributions from individuals: L. Gil de Sola, C. García, J. Pérez Gil, and P. Abelló from the I.E.O (Fuengirola Oceanographic Center, Spain) for the facilities providing MEDITS-ES data, Brian J. Bett and R. S. Lampitt from the National Oceanography Center Southampton, UK provided unpublished data of C. orsini from Billett et al. (2006) and from Roe et al. (1990). This work was also supported by the “European Project on Ocean Acidification” (EPOCA), which is funded from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no 211384. EPOCA is endorsed by the International Programmes IMBER, LOICZ and SOLAS. This work was funded by the grant Becas mineras. exp. 210001 to M. Lebrato and by the Kiel Cluster of Excellence “The Future Ocean” (D1067/87).

References

  1. Acuña, J. L., 2001. Pelagic tunicates: why gelatinous? The American Naturalist 158: 100–107.PubMedGoogle Scholar
  2. Alamaru, A., O. Bronstein, G. Dishon & Y. Loya, 2009. Opportunistic feeding by the fungid coral Fungia scruposa on the moon jellyfish Aurelia aurita. Coral Reefs 28: 865.Google Scholar
  3. Alldredge, A. L. & M. W. Silver, 1988. Characteristics, dynamics and significance of marine snow. Progress in Oceanography 20: 41–82.Google Scholar
  4. Apstein, C., 1910. Hat ein Organismus in der Tiefe Gelebt, in der er gefischt ist? Internationale Revue der gesamten Hydrobiologie und Hydrographie 3: 17–33.Google Scholar
  5. Arai, M. N., 2005. Predation on pelagic coelenterates: a review. Journal of the Marine Biological Association of the United Kingdom 85: 523–536.Google Scholar
  6. Atkinson, A., V. Siegel, E. Pakhomov & P. Rothery, 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432: 100–103.PubMedGoogle Scholar
  7. Bailey, D. M., N. J. King & I. G. Priede, 2007. Cameras and carcasses: historical and current methods for using artificial food falls to study deep-water animals. Marine Ecology Progress Series 350: 179–191.Google Scholar
  8. Balch, W., D. Drapeau, B. Bowler & E. Booth, 2007. Prediction of pelagic calcification rates using satellite measurements. Deep Sea Research II 54: 478–495.Google Scholar
  9. Bastian, T., D. Stokes, J. E. Kelleher, G. C. Hays, J. Davenport & T. K. Doyle, 2011. Fisheries bycatch data provide insights into the distribution of the mauve stinger (Pelagia noctiluca) around Ireland. ICES Journal of Marine Science 68: 436–443.Google Scholar
  10. Beaulieu, S. E., 2002. Accumulation and fate of phytodetritus on the sea floor. Oceanography and Marine Biology Annual Review 40: 171–232.Google Scholar
  11. Behrenfeld, M. J. & P. G. Falkowski, 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography 42: 1–20.Google Scholar
  12. Bertrand, J. A., L. Gil de Sola, C. Papaconstantinou, G. Relini & A. Souplet, 2002. The general specifications of the Medits surveys. In Abello, P., J. A. Bertrand, L. Gil de Sola, C. Papaconstantinou, G. Relini & A. Souplet (eds), Mediterranean Marine Demersal Resources, The MEDITS International Trawl Survey (1994–1999). Scientia Marina 66: 9–17.Google Scholar
  13. Billett, D. S. M., B. J. Bett, C. L. Jacobs, I. P. Rouse & B. D. Wigham, 2006. Mass deposition of jellyfish in the deep Arabian Sea. Limnology and Oceanography 51: 2077–2083.Google Scholar
  14. Buesseler, K. O., M. P. Bacon, K. Cochran & H. D. Livingston, 1992. Carbon and nitrogen export during the JGOFS North Atlantic Bloom Experiment estimated from 234Th, 238U disequilibria. Deep Sea Research I 39: 1115–1137.Google Scholar
  15. Buesseler, K. O., C. H. Lamborg, P. W. Boyd, P. J. Lam, T. W. Trull, R. R. Bidigare, J. K. B. Bishop, K. L. Casciotti, F. Dehairs, M. Elskens, M. Honda, D. M. Karl, D. A. Siegel, M. A. Silver, D. K. Steinberg, J. Valdes, B. Van Mooy & S. Wilson, 2007. Revisiting carbon flux through the ocean’s twilight zone. Science 316: 567–570.PubMedGoogle Scholar
  16. Burd, A. B., D. A. Hansell, D. K. Steinberg, T. R. Anderson, J. Aristegui, F. Baltar, S. R. Beaupre, K. O. Buesseler, F. DeHairs, G. A. Jackson, D. C. Kadko, R. Koppelmann, R. S. Lampitt, T. Nagata, T. Reinthaler, C. Robinson, B. H. Robison, C. Tamburini & T. Tanaka, 2010. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity, What the @$#! is wrong with present calculations and carbon budgets? Deep Sea Research II 57: 1557–1571.Google Scholar
  17. Cacchione, D. A., G. T. Rowe & A. Malahoff, 1978. Submersible investigation of outer Hudson submarine canyon. In Stanley, D. J. & G. Kelling (eds), Sedimentation in Canyons, Fans and Trenches. Dowden, Hutchinson and Ross, Stroudsburg: 42–50.Google Scholar
  18. Cargo, D. G., 1976. Some effects of tropical storm Agnes on the sea nettle population in the Chesapeake Bay. In Davis, J. & B. Laird (eds), The Effects of Tropical Storm Agnes on the Chesapeake Bay Estuarine System. Chesapeake Bay Consortium 54. Johns Hopkins University Press, Baltimore: 417–424.Google Scholar
  19. Caron, D. A., P. G. Davis, L. P. Madin & J. M. Sieburth, 1986. Enrichment of microbial populations in macroaggregates (marine snow) from surface waters of the North Atlantic. Journal of Marine Research 44: 543–565.Google Scholar
  20. Carrasson, M. & J. E. Cartes, 2002. Trophic relationships in a Mediterranean deep-sea fish community partition of food resources, dietary overlap and connections within the benthic boundary layer. Marine Ecology Progress Series 241: 41–55.Google Scholar
  21. Cartes, J. E., 1993a. Diets of deep-water pandalid shrimps on the Western Mediterranean slope. Marine Ecology Progress Series 96: 49–61.Google Scholar
  22. Cartes, J. E., 1993b. Diets of two deep-sea decapods Nematocarcinus exilis (Caridea: Nematocarcinidac) and Munida tenuimana (Anomura: Galatheidae) on the Western Mediterranean slope. Ophelia 37: 213–229.Google Scholar
  23. Cartes, J. E., V. Papiol, A. Palanques, J. Guillen & M. Demestre, 2007. Dynamics of suprabenthos off the Ebro Delta (Catalan Sea, western Mediterranean), spatial and temporal patterns and relationships with environmental factors. Estuarine, Coastal and Shelf Science 75: 501–515.Google Scholar
  24. Cartes, J. E., F. Maynou, E. Fanelli, C. Romano, V. Mamouridis & V. Papiol, 2009. The distribution of megabenthic, invertebrate epifauna in the Balearic Basin (Western Mediterranean) between 400 and 2300 m: environmental gradients influencing assemblages composition and biomass trends. Journal of Sea Research 66: 244–257.Google Scholar
  25. Cartes, J. E., E. Fanelli, V. Papiol & F. Maynou, 2010. Trophic relationships at interannual spatial and temporal scales of macro and megafauna around a submarine canyon off the Catalonian coast (western Mediterranean). Journal of Sea Research 63: 180–190.Google Scholar
  26. Clarke, A., L. J. Holmes & D. J. Gore, 1992. Proximate and composition of gelatinous zooplankton from the Southern Ocean. Journal of Experimental Marine Biology and Ecology 155: 55–68.Google Scholar
  27. Claustre, H., J. Bishop, E. Boss, S. Bernard, J-F. Berthon, C. Coatanoan, K. Johnson, A. Lotiker, O. Ulloa, M. J. Perry, F. D’Ortenzio, O. H. F. D’andon & J. Uitz, 2010. Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies: potential synergies with ocean colour remote sensing. OceanObs’09, Venice, September 21–25.Google Scholar
  28. Coble, P. G., C. E. del Castillo & B. Avril, 1998. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Research II 45: 2195–2223.Google Scholar
  29. Condon, R. H. & D. K. Steinberg, 2008. Development, biological regulation, and fate of ctenophore blooms in the York River estuary, Chesapeake Bay. Marine Ecology Progress Series 369: 153–168.Google Scholar
  30. Condon, R. H., D. K. Steinberg & D. A. Bronk, 2010. Production of dissolved organic matter and inorganic nutrients by gelatinous zooplankton in the York River estuary, Chesapeake Bay. Journal of Plankton Research 32: 153–170.Google Scholar
  31. Condon, R. H., D. K. Steinberg, P. A. del Giorgio, T. C. Bouvier, D. A. Bronk, W. A. Graham & H. W. Ducklow, 2011. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proceedings of the National Academy of Sciences of the United States of America 108: 10225–10230.PubMedGoogle Scholar
  32. Conte, M. H., T. D. Dickey, J. C. Weber, R. J. Johnson & A. H. Knap, 2003. Transient physical forcing of pulsed export of bioreactive material to the deep Sargasso Sea. Deep Sea Research I 50: 1157–1187.Google Scholar
  33. Cosson, N., M. Sibuet & J. Galeron, 1997. Community structure and spatial heterogeneity of the deep-sea macrofauna at three contrasting stations in the tropical northeast Atlantic. Deep Sea Research I 44: 247–269.Google Scholar
  34. Cowper, T. R., 1960. Occurrence of Pyrosoma on the continental Slope. Nature 187: 878–879.Google Scholar
  35. Cox, P. M., R. A. Bets, C. D. Jones, S. A. Spall & I. J. Totterdell, 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184–187.PubMedGoogle Scholar
  36. Davenport, J. & G. H. Balazs, 1991. “Fiery pyrosomas”: are pyrosomas an important items in the diet of leatherback turtles? British Herpetological Society Bulletin 37: 33–38.Google Scholar
  37. Doyle, T. K., D. R. Houghton, R. McDevitt, J. Davenport & G. C. Hays, 2007. The energy density of jellyfish: estimates from bomb-calorimetry and proximate-composition. Journal of Experimental Marine Biology and Ecology 343: 239–252.Google Scholar
  38. Drazen, J. C., B. N. Popp, C. A. Choy, T. Clemente, L. de Forest & K. L. Smith, 2008. Bypassing the abyssal benthic food web: macrourid diet in the eastern North Pacific inferred from stomach content and stable isotopes analyses. Limnology and Oceanography 53: 2644–2654.Google Scholar
  39. Duggins, D. O., 1981. Sea urchins and kelp, the effects of short term changes in urchin diet. Limnology and Oceanography 26: 391–394.Google Scholar
  40. Fanelli, E. & J. E. Cartes, 2008. Spatio-temporal variability in the diet of two pandalid shrimps in the western Mediterranean evidenced from gut contents and stable isotope analysis: in-fluence on the reproductive cycle. Marine Ecology Progress Series 355: 219–233.Google Scholar
  41. Franco, M. A., K. Soetaert, M. J. Costa, M. Vincx & J. Vanaverbeke, 2008. Uptake of phytodetritus by meiobenthos using 13C labelled diatoms and Phaeocystis in two contrasting sediments from the North Sea. Journal of Experimental Marine Biology and Ecology 362: 1–8.Google Scholar
  42. Franqueville, C., 1971. Macroplancton profond (invertébrés) de la Méditerranée nord-occidentale. Tethys 3: 11–56.Google Scholar
  43. Gage, J. D. & P. A. Tyler, 1991. Deep-Sea Biology: A Natural History of Organisms at the Deep-sea Floor. Cambridge University Press, Cambridge.Google Scholar
  44. Gatz, A. J., V. S. Kennedy & J. A. Mihursky, 1973. Effects of temperature on activity and mortality of the scyphozoan medusa Chrysaora quinquecirrha. Chesapeake Science 14: 171–180.Google Scholar
  45. Gili, J.-M., S. Rossi, F. Pages, C. Orejas, N. Teixido, P. J. Lopez-Gonzalez & W. E. Arntz, 2006. A new trophic link between the pelagic and benthic systems on the Antarctic shelf. Marine Ecology Progress Series 322: 43–49.Google Scholar
  46. Goldman, S. F. & G. R. Sedberry, 2010. Feeding habits of some demersal fish on the Charleston Bump off the southeastern United States. ICES Journal of Marine Science 68: 390–398.Google Scholar
  47. Gooday, A. J., B. J. Bett, E. Escobar, B. Ingole, L. A. Levin, C. Neira, A. V. Raman & J. Sellanes, 2010. Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Marine Ecology 31: 125–147.Google Scholar
  48. Gooding, R., C. Harley & E. Tang, 2009. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proceedings of the National Academy of Sciences of the United States of America 106: 9316–9321.PubMedGoogle Scholar
  49. Gordon, M. R. & J. E. Seymour, 2008. Quantifying movement of the tropical Australian cubozoan Chironex fleckeri using acoustic telemetry. Hydrobiologia 616: 87–97.Google Scholar
  50. Grassle, J. F. & J. P. Grassle, 1994. Notes from the abyss, the effects of a patchy supply of organic material and larvae on soft-sediment benthic communities. In Giller, P. S., A. G. Hildrew & D. G. Raffaelli (eds), Aquatic Ecology, Scale, Pattern and Process, 34th Symposium of the British Ecological Society. Blackwell Scientific, Oxford: 499–515.Google Scholar
  51. Grassle, J. F. & L. S. Morse-Porteus, 1987. Macrofaunal colonization of disturbed deep-sea environments and the structure of deep-sea benthic communities. Deep Sea Research I 34: 1911–1950.Google Scholar
  52. Gregg, W., P. Ginoux, P. Schopf & N. Casey, 2003. Phytoplankton and iron, validation of a global three-dimensional ocean biogeochemical model. Deep Sea Research II 50: 3143–3169.Google Scholar
  53. Griffin, D. J. G. & J. C. Yaldwyn, 1970. Giant colonies of pelagic tunicate (Pyrosoma spinosum) from SE Australia and New Zealand. Nature 226: 464.PubMedGoogle Scholar
  54. Hansson, L. J. & B. Norrman, 1995. Release of dissolved organic carbon (DOC) by the scyphozoan jellyfish Aurelia aurita and its potential influence on the production of planktic bacteria. Marine Biology 121: 527–532.Google Scholar
  55. Harbison, G. R., V. L. McAlister & R. W. Gilmer, 1986. The response of the salp, Pegea confoederata, to high levels of particulate material: starvation in the midst of plenty. Limnology and Oceanography 31: 371–382.Google Scholar
  56. Hays, G. C., T. K. Doyle, J. D. R. Houghton, M. K. S. Lilley, J. D. Metcalfe & D. Righton, 2008. Diving behaviour of jellyfish equipped with electronic tags. Journal of Plankton Research 30: 325–331.Google Scholar
  57. Honjo, S., J. Dymond, W. Prell & V. Ittekkot, 1999. Monsoon-controlled export fluxes to the interior of the Arabian Sea. Deep Sea Research II 46: 1859–1902.Google Scholar
  58. Hoppe, C. J. M., G. Langer, S. D. Rokitta, D. A. Wolf-Gladrow & B. Rost, 2010. On CO2 perturbation experiments: over-determination of carbonate chemistry reveals inconsistencies. Biogeosciences Discussions 7: 1707–1726.Google Scholar
  59. Houghton, J. D. R., T. K. Doyle, J. Davenport, M. K. S. Lilley, R. P. Wilson & G. C. Hays, 2007. Stranding events provide indirect insights into the seasonality and persistence of jellyfish medusae (Cnidaria: Scyphozoa). Hydrobiologia 589: 1–13.Google Scholar
  60. Hurley, D. E. & D. G. McKnight, 1959. Occurrence of Pyrosoma on the sea-floor 160 metres deep. Nature 183: 554–555.Google Scholar
  61. Iguchi, N., R. Ishikawa, O. Sato, T. Onishi, & T. Maeda, 2006. Decomposition rate of the giant jellyfish Nemopilema nomurai in Sado Island. FRA, Japan Sea National Fisheries Research Institute report. http://jsnfri.fra.affrc.go.jp/Kurage/kurage_hp18/Sado_bunkai.pdf.
  62. IOC, IHO, and BODC, 2003. Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans. British Oceanographic Data Centre, Liverpool.Google Scholar
  63. Jackson, J. B. C., 2008. Ecological extinction and evolution in the brave new ocean. Proceedings of the National Academy of Sciences of the United States of America 105: 11458–11465.PubMedGoogle Scholar
  64. Jahnke, R. A., 1996. The global ocean flux of particulate organic carbon, areal distribution and magnitude. Global Biogeochemical Cycles 10: 71–88.Google Scholar
  65. Jiang, S., T. D. Dickey, D. K. Steinberg & L. P. Madin, 2007. Temporal variability of zooplankton biomass from ADCP backscatter time series data at the Bermuda Testbed Mooring site. Deep Sea Research I 54: 608–636.Google Scholar
  66. Johns, B., P. Marsaleix, C. Estournel & R. Vehil, 1992. On the wind-driven coastal upwelling in the Gulf of Lions. Journal of Marine Systems 3: 309–320.Google Scholar
  67. Jones, D. O. B., 2009. Using existing industrial remotely operated vehicles for deep-sea science. Zoologica Scripta 38: 41–47.Google Scholar
  68. Jones, D. O. B., C. N. Roterman & A. R. Gates, 2010. Shell Gro SERPENT final report. National Oceanography Centre Southampton, Southampton. National Oceanography Centre Southampton Research and Consultancy Report: 79.Google Scholar
  69. Jumars, P. A., 1976. Deep-sea species diversity. Does it have a characteristic scale? Journal of Marine Research 34: 217–246.Google Scholar
  70. Karpen, V., T. Viergutz & L. Thomsen, 2007. Baltic Observatory for Oceanographic Monitoring. Sea Technology, July 2007, 18–20.Google Scholar
  71. Kaufmann, R. S. & K. L. Smith, 1997. Activity patterns of mobile epibenthic megafauna at an abyssal site in the eastern North Pacific: results from a 17-month time-lapse photographic study. Deep Sea Research I 44: 559–579.Google Scholar
  72. Kemp, W. M., E. M. Smith, M. Marvin-DiPasquale & W. R. Boynton, 1997. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay. Marine Ecology Progress Series 150: 229–248.Google Scholar
  73. Key, R. M., A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. Bullister, R. A. Feely, F. Millero, C. Mordy & T. H. Peng, 2004. A global ocean carbon climatology, results from GLODAP. Global Biogeochemical Cycles 18: GB4031.Google Scholar
  74. Lampitt, R. S., B. J. Bett, K. Kiriakoulakis, E. E. Popova, O. Ragueneau, A. Vangriesheim & G. A. Wolff, 2001. Material supply to the deep-seafloor in the Northeast Atlantic. Progress in Oceanography 50: 27–63.Google Scholar
  75. Lampitt, R. S., B. Boorman, L. Brown, M. Lucas, I. Salter, R. Sanders, K. Saw, S. Seeyave, S. J. Thomalla & R. Turnewitsch, 2008. Particle export from the euphotic zone: estimates using a novel drifting sediment trap, 234Th and new production. Deep Sea Research I 55: 150–1484.Google Scholar
  76. Larson, R. J., 1986. Water content, organic content, and carbon and nitrogen composition of medusae from the northeast Pacific. Journal of Experimental Marine Biology and Ecology 99: 107–120.Google Scholar
  77. Laws, E. A., 2004. Export flux and stability as regulators of community composition in pelagic marine biological communities: implications for regime shifts. Progress in Oceanography 60: 343–354.Google Scholar
  78. Lebrato, M. & D. O. B. Jones, 2009. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnology and Oceanography 54: 1197–1209.Google Scholar
  79. Lebrato, M., M. Pahlow, A. Oschlies, K. A. Pitt, D. O. B. Jones, J. C. Molinero & R. H. Condon, 2011. Depth attenuation of organic matter export associated with jelly falls. Limnology & Oceanography 56:1917–1928.Google Scholar
  80. Levin, L. A., R. J. Etter, M. A. Rex, A. J. Gooday, C. R. Smith, J. Pineda, C. T. Stuart, R. R. Hessler & D. Pawson, 2001. Environmental influences on regional deep-sea species diversity. Annual Review of Ecology Evolution and Systematics 32: 51–93.Google Scholar
  81. Loeb, V., V. Siegel, O. Holm-Hansen, R. Hewitt, W. Fraser, W. Trivelpiece & S. Trivelpiece, 1997. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387: 897–900.Google Scholar
  82. Lombard, F. & T. P. Kiorbe, 2010. Marine snow originating from appendicularian houses: age-dependent settling characteristics. Deep Sea Research I 57: 1304–1313.Google Scholar
  83. Marchant, M., D. Hebbeln & G. Wefer, 1999. High resolution planktic foraminiferal record of the last 13:300 years from the upwelling area off Chile. Marine Geology 61: 115–128.Google Scholar
  84. Martin, J. & J.-C. Miquel, 2010. High downward flux of mucilaginous aggregates in the Ligurian Sea during summer 2002. Similarities with the mucilage phenomenon in the Adriatic Sea. Marine Ecology 31: 393–406.Google Scholar
  85. McClain, C. R., M. A. Rex & R. Jabbour, 2005. Deconstructing bathymetric body size patterns in deep-sea gastropods. Marine Ecology Progress Series 297: 181–187.Google Scholar
  86. Merckelbach, L. M. & H. Ridderinkhof, 2006. Estimating suspended sediment concentration from ADCP backscatterance at a site with strong tidal currents. Ocean Dynamics 56: 153–168.Google Scholar
  87. Middelburg, J. J., C. Barranguet, H. T. S. Boschker, P. M. J. Herman, T. Moens & C. H. R. Heip, 2000. The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study. Limnology Oceanography 45: 1224–1234.Google Scholar
  88. Mills, C. E., 1981. Diversity of swimming behaviours in hydromedusae as related to feeding and utilization of space. Marine Biology 64: 185–189.Google Scholar
  89. Mills, C. E., 1993. Natural mortality in NE Pacific coastal hydromedusae: grazing predation, wound healing and senescence. Bulletin of Marine Science 53: 194–203.Google Scholar
  90. Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68.Google Scholar
  91. Miyake, H., D. L. Lindsay, J. C. Hunt & T. Hamatsu, 2002. Scyphomedusa Aurelia limbata (Brandt, 1838) found in deep waters off Kushiro, Hokkaido, Northern Japan. Journal of Plankton Biology and Ecology 49: 44–46.Google Scholar
  92. Miyake, H., D. L. Lindsay, M. Kitamura & S. Nishida, 2005. Occurrence of the scyphomedusa Parumbrosa polylobata Kishinouye, 1910 in Suruga Bay, Japan. Journal of Plankton Biology and Ecology 52: 58–66.Google Scholar
  93. Molinero, J. C., M. Casini & E. Buecher, 2008. The influence of the Atlantic and regional climate variability on the long-term changes in gelatinous carnivore populations in the northwestern Mediterranean. Limnology and Oceanography 53: 1456–1467.Google Scholar
  94. Monniot, C. & F. Monniot, 1966. A benthic pyrosoma, Pyrosoma benthica n. sp. French Academy of Science 263: 368–370.Google Scholar
  95. Moseley, H. N., 1880. Deep-sea dredging and life in te deep sea III. Nature 21: 591–593.Google Scholar
  96. Murty, S. J., B. J. Bett & A. J. Gooday, 2009. Megafaunal responses to strong oxygen gradients on the Pakistan margin of the Arabian Sea. Deep Sea Research I 56: 472–487.Google Scholar
  97. Niggl, W., M. S. Naumann, U. Struck, R. Manasrah & C. Wild, 2010. Organic matter release by the benthic upside-down jellyfish Cassiopea sp. fuels pelagic food webs in coral reefs. Journal of Experimental Marine Biology and Ecology 384: 99–106.Google Scholar
  98. Pakhomov, E. A., V. Fuentes, I. Schloss, A. Atencio & G. B. Snal, 2003. Beaching of the tunicate Salpa thompsoni at high levels of suspended particulate matter in the Southern Ocean. Polar Biology 26: 427–431.Google Scholar
  99. Perissinotto, R. & E. A. Pakhomov, 1998. Contribution of salps to carbon flux of marginal ice zone of the Lazarev Sea, Southern Ocean. Marine Biology 131: 25–32.Google Scholar
  100. Pitt, K. A., D. T. Welsh & R. H. Condon, 2009. Influence of jellyfish blooms on carbon, nitrogen, and phosphorus cycling and plankton production. Hydrobiologia 616: 133–149.Google Scholar
  101. Purcell, J. E., 2012. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annual Review of Marine Science 4: 209–235.Google Scholar
  102. Purcell, J. E., W. M. Graham & H. Dumont, 2001. Jellyfish Blooms: Ecological and Societal Importance. Developments in Hydrobiology 155 (Hydrobiologia 451). Kluwer Academic, Dordrecht: 1–333.Google Scholar
  103. Purcell, J. E., S.-I. Uye & W.-T. Lo, 2007. Anthropogenic causes if jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350: 153–174.Google Scholar
  104. Ramirez-Llodra, E., W. D. K. Reid & D. S. M. Billett, 2005. Long-term changes in reproductive patterns of the holothurian Oneirophanta mutabilis from the Porcupine Abyssal Plain. Marine Biology 146: 683–693.Google Scholar
  105. Relini, G., 2000. Demersal trawl surveys in Italian seas: a short review. In Bertrand, J. A. & G. Relini (eds), Demersal Resources in the Mediterranean. Proceedings of the Symposium held in Pisa, 18–21 March 1998. Actes de Colloques 26, 76–93.Google Scholar
  106. Reusch, T. B. H., S. Bolte, M. Sparwel, A. G. Moss & J. Javidpour, 2010. Microsatellites reveal origin and genetic diversity of Eurasian invasions by one of the world’s most notorious marine invader, Mnemiopsis leidyi (Ctenophora). Molecular Ecology 19: 2690–2699.PubMedGoogle Scholar
  107. Richardson, A. J., A. Bakun, G. C. Hays & M. J. Gibbons, 2009. The jellyfish joyride, causes, consequences and management responses to a more gelatinous future. Trends in Ecology & Evolution 24: 312–322.Google Scholar
  108. Robison, B. H., K. R. Reisenbichler & R. E. Sherlock, 2005. Giant larvacean houses, rapid carbon transport to the deep-sea floor. Science 308: 1609–1611.PubMedGoogle Scholar
  109. Roe, H. S. J., D. S. M. Billett & R. S. Lampitt, 1990. Benthic/midwater interactions on the Madeira Abyssal Plain; evidence for biological transport pathways. Progress in Oceanography 24: 127–140.Google Scholar
  110. Rowe, G. T. & N. Staresinic, 1979. Source of organic matter to the deep-sea benthos. Ambio Special Report 6: 19–23.Google Scholar
  111. Ruhl, H. A., 2007. Abundance and size distribution dynamics of abyssal epibenthic megafauna in the northeast Pacific. Ecology 88: 1250–1262.PubMedGoogle Scholar
  112. Ruhl, H. A., 2008. Community change in the variable resource habitat of the abyssal northeast Pacific. Ecology 89: 991–1000.PubMedGoogle Scholar
  113. Ruhl, H. A. & K. L. Smith, 2004. Shifts in deep-sea community structure linked to climate and food supply. Science 305: 513–515.PubMedGoogle Scholar
  114. Ruhl, H. A., J. A. Ellena & K. L. Smith, 2008. Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proceedings of the National Academy of Sciences of the United States of America 105: 17006–17011.PubMedGoogle Scholar
  115. Sanchez, P., M. Demestre & P. Martin, 2003. Characterisation of the discards generated by bottom trawling in the northwestern Mediterranean. Fisheries Research 67: 71–80.Google Scholar
  116. Sartor, P., M. Sbrana & B. Reale, 2003. Impact of the deep sea trawl fishery on demersal communities of the northern Tyrrhenian Sea (Western Mediterranean). Journal of the Northwest Atlantic Fishery Science 31: 275–284.Google Scholar
  117. Sempere, R., S. C. Yoro, F. van Wambeke & B. Charriere, 2000. Microbial decomposition of large organic particles in the northwestern Mediterranean Sea: an experimental approach. Marine Ecology Progress Series 198: 61–72.Google Scholar
  118. Send, U., R. Weller, D. Wallace, F. Chavez, R. S. Lampitt, T. Dickey, M. Honda, K. Nittis, R. Lukas, M. McPhaden & R. A. Feely, 2010. OceanSITES. OceanObs’09, Venice, September 21–25.Google Scholar
  119. Sexton, M. A., R. R. Hood, J. Sarkodee-adoo & A. M. Liss, 2010. Response of Chrysaora quinquecirrha medusae to low temperature. Hydrobiologia 645: 125–133.Google Scholar
  120. Seymour, J. E., T. J. Carrette & P. A. Sutherland, 2004. Do box jellyfish sleep at night? Medical Journal of Australia 181: 706.Google Scholar
  121. Smith, C. R. & A. M. Baco, 2003. Ecology of whale falls at the deep-sea floor. Oceanography and Marine Biology Annual Review 41: 311–354.Google Scholar
  122. Smith, C. R., F. C. De Leo, A. F. Bernardino, A. K. Sweetman & P. Martinez-Arbizu, 2008. Abyssal food limitation, ecosystem structure and climate change. Trends in Ecology & Evolution 23: 518–528.Google Scholar
  123. Soltwedel, T., K. von Juterzenka, K. Premke & M. Klages, 2003. What a lucky shot! Photographic evidence for a medium-sized natural food-fall at the deep seafloor. Oceanologica Acta 26: 5–6.Google Scholar
  124. Soltwedel, T., E. Bauerfeind, M. Bergmann, N. Budaeva, E. Hoste, N. Jaeckisch, K. von Juterzenka, J. Matthiessen, V. Mokievsky, E.-V. Nothig, N.-V. Queric, B. Sablotny, E. Sauter, M. Schewe, B. Urban-Malinga, J. Wegner, M. Wlodarska-Kowalczuk & M. Klages, 2005. HAUSGARTEN: multidisciplinary investigations at a deep-sea, long-term observatory in the Arctic Ocean. Oceanography 18: 46–61.Google Scholar
  125. Sweetman, A. K. & A. Chapman, 2011. First observations of jelly-falls at the seafloor in a deep-sea fjord. Deep Sea Research I 58: 1206–1211.Google Scholar
  126. Sweetman, A. K. & U. Witte, 2008a. Response of an abyssal macrofaunal community to a phytodetrital pulse. Marine Ecology Progress Series 355: 73–84.Google Scholar
  127. Sweetman, A. K. & U. Witte, 2008b. Macrofaunal response to phytodetritus in a bathyal Norwegian fjord. Deep Sea Research I 55: 1503–1514.Google Scholar
  128. Takahashi, K., H. Saito, S. Kakehi & K. Hidaka, 2010. Sapphirinid copepods as a predator of doliolids, their contribution to doliolids mortality and sinking flux. EOS Transactions AGU, 91, 26, Ocean Science Meeting. Abstract BO13A-08.Google Scholar
  129. Tinta, T., A. Malej, M. Kos & V. Turk, 2010. Degradation of the Adriatic medusa Aurelia sp. by ambient bacteria. Hydrobiologia 1: 179–191.Google Scholar
  130. Titelman, J., L. Riemann, T. A. Sornes, T. Nilsen, P. Griekspoor & U. Bamstedt, 2006. Turnover of dead jellyfish, stimulation and retardation of microbial activity. Marine Ecology Progress Series 325: 43–58.Google Scholar
  131. Turner, R. D., 1973. Wood-boring bivalves, opportunistic species in the deep sea. Science 180: 1377–1379.PubMedGoogle Scholar
  132. Turner, J. T., 2002. Zooplankton faecal pellets, marine snow and sinking phytoplankton blooms. Aquatic Microbiology and Ecology 27: 57–102.Google Scholar
  133. Tyler, P. A., 1988. Seasonality in the deep sea. Oceanography and Marine Biology Annual. Review 18: 125–153.Google Scholar
  134. Vardaro, M. F., H. A. Ruhl & K. L. Smith, 2009. Climate variation, carbon flux, and bioturbation in the abyssal North Pacific. Limnology and Oceanography 54: 2081–2088.Google Scholar
  135. Vetter, E. W. & P. K. Dayton, 1998. Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep Sea Research II 45: 25–54.Google Scholar
  136. Vetter, E. W. & P. K. Dayton, 1999. Organic enrichment by macrophyte detritus, and abundance patterns of megafaunal populations in submarine canyons. Marine Ecology Progress Series 186: 137–148.Google Scholar
  137. Wefer, G. & G. Fischer, 1993. Seasonal patterns of vertical particle flux in equatorial and coastal upwelling areas of the eastern Atlantic. Deep Sea Research I 40: 1613–1645.Google Scholar
  138. West, E. J., K. A. Pitt, D. T. Welsh, K. Koop & D. Rissik, 2009a. Top-down and bottom-up influences of jellyfish on primary productivity and planktonic assemblages. Limnology and Oceanography 54: 2058–2071.Google Scholar
  139. West, E. J., D. T. Welsh & K. A. Pitt, 2009b. Influence of decomposing jellyfish on sediment oxygen demand and nutrient dynamics. Hydrobiologia 616: 151–160.Google Scholar
  140. Wiebe, P. H., L. P. Madin, L. R. Haury, G. R. Harbison & L. M. Philbin, 1979. Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea. Marine Biology 53: 249–255.Google Scholar
  141. Wigham, B. D., P. A. Tyler & D. S. M. Billett, 2003. Reproductive biology of the abyssal holothurian Amperima rosea: an opportunistic response to variable flux of surface derived organic matter? Journal of the Marine Biology Association of the United Kingdom 83: 175–188.Google Scholar
  142. Wilkins, M. E., M. Zimmernmann & K. L. Weinberg, 1998. The 1995 Pacific West Coast bottom trawl survey of groundfish resources: estimates of distribution, abundance, and length and age composition. NOAA technical Memorandum NMFS-AFSC-89.Google Scholar
  143. Witte, U., N. Aberte, M. Sand & F. Wenzhofer, 2003. Rapid response of a deep-sea benthic community to POM enrichment, an in situ experimental study. Marine Ecology Progress Series 251: 27–36.Google Scholar
  144. Wood, H. L., J. I. Spicer & S. Widdicombe, 2008. Ocean acidification may increase calcification rates, but at a cost. Proceedings of the Royal Society B 275: 1767–1773.PubMedGoogle Scholar
  145. Yamamoto, J., M. Hirose, T. Ohtani, K. Sugimoto, K. Hirase, N. Shimamoto, T. Shimura, N. Honda, Y. Fujimori & T. Mukai, 2008. Transportation of organic matter to the sea floor by carrion falls of the giant jellyfish Nemopilema nomurai in the Sea of Japan. Marine Biology 153: 311–317.Google Scholar
  146. Young, C. M., 2003. Reproduction, development and life-history traits. In Tyler, P. A. (ed.), Ecosystems of the World. Elsevier Science, Amsterdam: 381–426.Google Scholar
  147. Zeldis, J., C. S. Davis, M. R. James, S. L. Ballara, W. E. Booth & F. H. Chang, 1995. Salp grazing: effects on phytoplankton abundance, vertical distribution and taxonomic composition in a coastal habitat. Marine Ecology Progress Series 126: 267–283.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mario Lebrato
    • 1
  • Kylie A. Pitt
    • 2
  • Andrew K. Sweetman
    • 3
    • 4
  • Daniel O. B. Jones
    • 5
  • Joan E. Cartes
    • 6
  • Andreas Oschlies
    • 1
  • Robert H. Condon
    • 7
  • Juan Carlos Molinero
    • 1
  • Laetitia Adler
    • 8
    • 9
  • Christian Gaillard
    • 10
  • Domingo Lloris
    • 6
  • David S. M. Billett
    • 5
  1. 1.GEOMARHelmholtz Centre for Ocean Research KielKielGermany
  2. 2.Australian Rivers Institute, Coast and EstuariesGriffith UniversityBrisbaneAustralia
  3. 3.Norwegian Institute for Water ResearchBergenNorway
  4. 4.Centre for GeobiologyUniversity of BergenBergenNorway
  5. 5.National Oceanography CentreSouthamptonUK
  6. 6.Institut de Ciències Del Mar de Barcelona, CSICBarcelonaSpain
  7. 7.Dauphin Island Sea LabDauphin IslandUSA
  8. 8.Biocenter Grindel and Zoological MuseumHamburgGermany
  9. 9.School of Geological SciencesUniversity College DublinDublin 4Ireland
  10. 10.Université de Lyon 1, UMR CNRS 5125Villeurbanne cedexFrance

Personalised recommendations