Advertisement

Hydrobiologia

, Volume 710, Issue 1, pp 47–59 | Cite as

Variation in fish community structure, richness, and diversity in 56 Danish lakes with contrasting depth, size, and trophic state: does the method matter?

  • Rosemberg Fernandes Menezes
  • Finn Borchsenius
  • Jens-Christian Svenning
  • Martin Søndergaard
  • Torben L. Lauridsen
  • Frank Landkildehus
  • Erik Jeppesen
SHALLOW LAKE ECOSYSTEMS

Abstract

The distribution of freshwater fish is influenced by food availability, habitat heterogeneity, competition, predation, trophic state, and presence/absence of macrophytes. This poses a challenge to monitoring, and researchers have been struggling to develop accurate sampling methods for obtaining a better understanding of fish communities. We compare fish community composition, richness, and diversity in 56 Danish lakes using data obtained by gillnetting in different lake zones and near-shore electrofishing, respectively. On average, electrofishing captured more species than offshore gillnets, but not more than littoral gillnets. Overall, the different fish sampling methods showed consistency as to fish community structure, but noticeable differences in community–environment relationships. Lake area was the best predictor for fish species richness in the littoral samplings, while it was poor for offshore samplings. Electrofishing was more efficient than gillnets at catching pike (Esox lucius), eel (Anguilla anguilla), and tench (Tinca tinca), whereas pelagic gillnets were better for catching pikeperch (Sander lucioperca) and perch (Perca fluviatilis). Independently of methods, the total number per unit of effort and weight per unit of effort were generally positively related to summer chlorophyll a, and, for offshore nets, negatively related to average depth. Our results show that sampling restricted to specific habitats within the lakes does not provide a representative of the whole-lake fish community, as all methods miss some important species that other methods capture. However, electrofishing seems to be a fast alternative to gillnets for monitoring fish species richness and composition in littoral habitats of Danish lakes.

Keywords

Fish monitoring Electrofishing Gillnets Species richness Fish community composition Species–environment relationships 

Notes

Acknowledgments

The authors would like to thank Anne Mette Poulsen for manuscript assistance and three anonymous reviewers for providing valuable comments and suggestions to improve our manuscript. Funding was given by WISER (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery), European Union under the 7th Framework Program, Theme 6 (Environment including Climate Change, contract No. 226273), the EU-FP7 project REFRESH, CRES and CLEAR.

References

  1. Amarasinghe, U. S. & R. L. Welcomme, 2002. An analysis of fish species richness in natural lakes. Environmental Biology of Fishes 65: 327–339.CrossRefGoogle Scholar
  2. Arnold, T. W., 2010. Uninformative parameters and model selection using Akaike’s information criterion. Journal of Wildlife Management 74: 1175–1178.Google Scholar
  3. Bachmann, R. W., B. L. Jones, D. D. Fox, M. Hoyer, L. A. Bull & D. E. Canfield, 1996. Relations between trophic state indicators and fish in Florida (U.S.A.) lakes. Canadian Journal of Fisheries and Aquatic Sciences. 53: 842–855.Google Scholar
  4. Barbour, C. D. & J. H. Brown, 1974. Fish species diversity in lakes. The American Naturalist 108: 473–489.CrossRefGoogle Scholar
  5. Bean, C. W. & I. J. Winfield, 1995. Habitat use and activity patterns of roach (Rutilus rutilus (L.)), rudd (Scardinius erythrophthalmus (L.)), perch (Perca fluviatilis L.) and pike (Esox lucius) in the laboratory: the role of predation threat and structural complexity. Ecology of Freshwater Fish 4: 37–46.CrossRefGoogle Scholar
  6. Benson, B. J. & J. J. Magnuson, 1992. Spatial heterogeneity of littoral fish assemblages in lakes – relation to species-diversity and habitat structure. Canadian Journal of Fisheries and Aquatic Sciences 49: 1493–1500.CrossRefGoogle Scholar
  7. Breukelaar, A. W., E. H. R. R. Lammens, J. G. P. Klein Breteler & I. Tátrai, 1994. Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshwater Biology 32: 113–121.CrossRefGoogle Scholar
  8. Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York.Google Scholar
  9. Casselman, J. M., T. Penczak, L. Carl, R. H. K. Mann, J. Holcik & W. A. Woitowich, 1990. An evaluation of fish sampling methodologies for large river systems. Polish Archives of Hydrobiology 37: 521–551.Google Scholar
  10. CEN, 2002. Water quality – sampling of fish with electricity. European Committee for standardization EN14011.Google Scholar
  11. CEN, 2005. Water quality – sampling of fish with multi-mesh gillnets. European Committee for Standardization EN 14757.Google Scholar
  12. Chapman, C. A. & W. C. Mackay, 1984. Versatility in habitat use by a top aquatic predator, Esox lucius L. Journal of Fish Biology 25: 109–115.CrossRefGoogle Scholar
  13. Connor, E. F. & E. D. McCoy, 1979. The statistics and biology of the species–area relationship. The American Naturalist 113: 791–833.CrossRefGoogle Scholar
  14. Diekmann, M., U. Bramick, R. Lemcke & T. Mehner, 2005. Habitat-specific fishing revealed distinct indicator species in German lowland lake fish communities. Journal of Applied Ecology 42: 901–909.CrossRefGoogle Scholar
  15. Eckmann, R. & R. Rösch, 1998. Lake Constance fisheries and fish ecology. Archiv für Hydrobiologie, Special Issues Advance of Limnology 53: 285–301.Google Scholar
  16. Eggleton, M. A., J. R. Jackson & B. J. Lubinski, 2010. Comparison of gears for sampling littoral-zone fishes in floodplain lakes of the lower white river, Arkansas. North American Journal of Fisheries and Management 30: 928–939.CrossRefGoogle Scholar
  17. Eklov, P., 1997. Effects of habitat complexity and prey abundance on the spatial and temporal distributions of perch (Perca fluviatilis) and pike (Esox lucius). Canadian Journal of Fisheries and Aquatic Sciences 54: 1520–1531.Google Scholar
  18. Fager, E. W., 1972. Diversity: a sampling study. The American Naturalist 106: 293–310.CrossRefGoogle Scholar
  19. Fago, D., 1998. Comparison of littoral fish assemblages sampled with a mini-fyke net or with a combination of electrofishing and small-mesh seine in Wisconsin lakes. North American Journal of Fisheries Management 18: 731–738.CrossRefGoogle Scholar
  20. Fischer, P. & R. Eckmann, 1997. Spatial distribution of littoral fish species in a large European lake, Lake Constance, Germany. Archiv Für Hydrobiologie 140: 91–116.Google Scholar
  21. Gliwicz, Z. M. & A. Jachner, 1992. Diel migrations of juvenile fish – a ghost of predation past or present. Archiv Für Hydrobiologie 124: 385–410.Google Scholar
  22. Goffaux, D., G. Grenouillet & P. Kestemont, 2005. Electrofishing versus gillnet sampling for assessment of fish assemblages in large rivers. Archiv Für Hydrobiologie 162: 73–90.CrossRefGoogle Scholar
  23. Gotelli, N. J. & R. K. Colwell, 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379–391.CrossRefGoogle Scholar
  24. Growns, I. O., D. A. Pollard & J. H. Harris, 1996. A comparison of electric fishing and gillnetting to examine the effects of anthropogenic disturbance on riverine fish communities. Fisheries Management and Ecology 3: 13–24.CrossRefGoogle Scholar
  25. Hamley, J. M., 1975. Review of gillnet selectivity. Journal of the Fisheries Research Board of Canada 32: 1943–1969.CrossRefGoogle Scholar
  26. Hanson, J. M. & W. C. Leggett, 1982. Empirical prediction of fish biomass and yield. Canadian Journal of Fisheries and Aquatic Sciences 39: 257–263.CrossRefGoogle Scholar
  27. Harvey, J. & I. G. Cowx, 1996. Electric fishing for assessment of fish stocks in large rivers. In Cowx, I. G. (ed.), Stock Assessment in Inland Fisheries. Blackwell, Oxford: 11–26.Google Scholar
  28. Heck, K. L., G. Van Belle Jr & D. S. Simberloff, 1975. Explicit calculation of the rarefaction diversity measurements and the determination of sufficient sample size. Ecology 56: 1459–1461.CrossRefGoogle Scholar
  29. Holmgren, K. & M. Appelberg, 2000. Size structure of benthic freshwater fish communities in relation to environmental gradients. Journal of Fish Biology 57: 1312–1330.CrossRefGoogle Scholar
  30. Hurlbert, S. H., 1971. The non concept of species diversity: a critique and alternative parameters. Ecology 52: 577–586.CrossRefGoogle Scholar
  31. James, F. C. & S. Rathbun, 1981. Rarefaction, relative abundance, and diversity of avian communities. Auk 98: 785–800.Google Scholar
  32. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342: 151–164.CrossRefGoogle Scholar
  33. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201–218.CrossRefGoogle Scholar
  34. Jeppesen, E., Z. Pekcan-Hekim, T. L. Lauridsen, M. Sondergaard & J. P. Jensen, 2006. Habitat distribution of fish in late summer: changes along a nutrient gradient in Danish lakes. Ecology of Freshwater Fish 15: 180–190.CrossRefGoogle Scholar
  35. Jepsen, N. & S. Berg, 2002. The use of winter refuges by roach tagged with miniature radio transmitters. Hydrobiologia 483: 167–173.CrossRefGoogle Scholar
  36. Jepsen, N., S. Beck, C. Skov & A. Koed, 2001. Behavior of pike (Esox lucius L.) >50 cm in a turbid reservoir and in a clearwater lake. Ecology of Freshwater Fish 10: 26–34.CrossRefGoogle Scholar
  37. Johnson, J. B. & K. S. Omland, 2004. Model selection in ecology and evolution. Trends in Ecology & Evolution 19: 101–108.CrossRefGoogle Scholar
  38. Kronvang, B., G. Ærtebjerg, R. Grant, P. Kristensen, M. Hovmand & J. Kirkegaard, 1993. Nation wide monitoring of nutrients and their ecological effects: state of the Danish aquatic environment. Ambio 22: 176–187.Google Scholar
  39. Lauridsen, T. L., F. Landkildehus, E. Jeppesen, T. B. Jørgensen & M. Søndergaard, 2008. A comparison of methods for calculating Catch Per Unit Effort (CPUE) of gill net catches in lakes. Fisheries Research 93: 204–211.CrossRefGoogle Scholar
  40. Leach, J. H., M. G. Johnson, J. R. M. Kelso, J. Hartmann, W. Numann & B. Entz, 1977. Responses of percid fishes and their habitats to eutrophication. Journal of the Fisheries Research Board of Canada 34: 1964–1971.CrossRefGoogle Scholar
  41. Lewin, W. C., N. Okun & T. Mehner, 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biology 49: 410–424.CrossRefGoogle Scholar
  42. Lund, S. S., F. Landkildehus, M. Søndergaard, T. L. Lauridsen, S. Egemose, H. S. Jensen, F. Ø. Andersen, L. S. Johansson, M. Ventura & E. Jeppesen, 2010. Rapid changes in fish community structure and habitat distribution following the precipitation of lake phosphorus with aluminium. Freshwater Biology 55: 1036–1049.CrossRefGoogle Scholar
  43. MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton.Google Scholar
  44. Mehner, T., M. Diekmann, U. Bramick & R. Lemcke, 2005. Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human-use intensity. Freshwater Biology 50: 70–85.CrossRefGoogle Scholar
  45. Mehner, T., K. Holmgren, T. L. Lauridsen, E. Jeppesen & M. Diekmann, 2007. Lake depth and geographical position modify lake fish assemblages of the European ‘Central Plains’ ecoregion. Freshwater Biology 52: 2285–2297.CrossRefGoogle Scholar
  46. Mortensen, E., H. Jerl-Jensen, J. P. Müller & M. Timmermann, 1990. Fiskeundersølgelser i søer. Udersøgelsesprogram, fiskeredskaber og metoder (Fish investigations in lakes Monitoring programme fish gear and methods). National Environmental Research Institute. Technical Report 3 (in Danish).Google Scholar
  47. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2010. vegan: community ecology package. R package version 1.17–4. http://CRAN.R-project.org/package=vegan
  48. Olin, M., M. Rask, J. Ruuhijarvi, M. Kurkilahti, P. Ala-Opas & O. Ylonen, 2002. Fish community structure in mesotrophic and eutrophic lakes of southern Finland: the relative abundances of percids and cyprinids along a trophic gradient. Journal of Fish Biology 60: 593–612.CrossRefGoogle Scholar
  49. Perrow, M. R., A. J. D. Jowitt & S. R. Johnson, 1996. Factors affecting the habitat selection of tench in a shallow eutrophic lake. Journal of Fish Biology 48: 859–870.CrossRefGoogle Scholar
  50. Persson, L., 1983. Effects of intraspecific and interspecific competition on dynamics and size structure of a perch (Perca fluviatilis) and a roach (Rutilus rutilus) population. Oikos 41: 126–132.CrossRefGoogle Scholar
  51. Persson, L., 1986. Effects of reduced interspecific competition on resource utilization in perch (Perca fluviatilis). Ecology 67: 355–364.CrossRefGoogle Scholar
  52. Persson, L., 1994. Natural shifts in the structure of fish communities: mechanisms and constraints on perturbation sustenance. In Cowx, I. G. (ed.), Rehabilitation of Freshwater Fisheries. Fishing News Books, Blackwell Scientific Publications, Oxford: 421–433.Google Scholar
  53. Persson, L., G. Andersson, S. F. Hamrin & L. Johansson, 1988. Predation regulation and primary production along the productivity gradient of temperate lake ecosystems. In Carpenter, S. R. (ed.), Complex Interactions in Lake Communities. Springer, New York: 45–65.CrossRefGoogle Scholar
  54. Persson, L., S. Diehl, L. Johansson, G. Andersson & S. F. Hamrin, 1991. Shifts in fish communities along the productivity gradient of temperate lakes - patterns and the importance of size-structured interactions. Journal of Fish Biology 38: 281–293.CrossRefGoogle Scholar
  55. Pusey, B. J., M. J. Kennard, J. M. Arthur & A. H. Arthington, 1998. Quantitative sampling of stream fish assemblages: single vs. multiple pass electrofishing. Australian Journal of Ecology 23: 365–374.CrossRefGoogle Scholar
  56. Radke, R. J. & R. Eckmann, 1996. Piscivorous eels in LakeConstance: can they influence year class strength of perch? Annales Zoologici Fennici 33: 489–494.Google Scholar
  57. Rossier, O., 1995. Spatial and temporal separation of littoral-zone fishes of lake geneva (switzerland-france). Hydrobiologia 300: 321–327.CrossRefGoogle Scholar
  58. Rulifson, R. A., 1991. Finfish utilization of man-initiated and adjacent natural creeks of South Creek estuary, North Carolina using multiple gear types. Estuaries 14: 447–464.CrossRefGoogle Scholar
  59. Sanders, H. L., 1968. Marine benthic diversity: a comparative study. The American Naturalist 102: 243–282.CrossRefGoogle Scholar
  60. Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.CrossRefGoogle Scholar
  61. Simberloff, D., 1972. Properties of the rarefaction diversity measurement. The American Naturalist 106: 414–418.CrossRefGoogle Scholar
  62. Skov, C. & S. Berg, 1999. Utilization of natural and artificial habitats by YOY pike in a biomanipulated lake. Hydrobiologia 408: 115–122.CrossRefGoogle Scholar
  63. Søndergaard, M., E. Jeppesen, J. P. Jensen & S. L. Amsinck, 2005. Water framework directive: ecological classification of Danish lakes. Journal of Applied Ecology 42: 616–629.CrossRefGoogle Scholar
  64. Sutela, T., M. Rask, T. Vehanen & A. Westermark, 2008. Comparison of electrofishing and NORDIC gillnets for sampling littoral fish in boreal lakes. Lakes & Reservoirs: Research and Management 13: 215–220.CrossRefGoogle Scholar
  65. Tonn, W. M. & J. J. Magnuson, 1982. Patterns in the species composition and richness of fish assemblages in northern wisconsin lakes. Ecology 63: 1149–1166.CrossRefGoogle Scholar
  66. Vander Zanden, M. J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.CrossRefGoogle Scholar
  67. Weaver, M. J., J. J. Magnuson & M. K. Clayton, 1993. Analyses for differentiating littoral fish assemblages with catch data from multiple sampling gears. Transactions of the American Fisheries Society 122: 1111–1119.CrossRefGoogle Scholar
  68. Werner, E. E. & D. J. Hall, 1988. Ontogenetic habitat shifts in bluegill – the foraging rate predation risk trade-off. Ecology 69: 1352–1366.CrossRefGoogle Scholar
  69. Werner, E. E., J. F. Gilliam, D. J. Hall & G. G. Mittelbach, 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 1540–1548.CrossRefGoogle Scholar
  70. Williams, C. B. (ed.), 1964. Patterns in the Balance of Nature. Academic Press, London.Google Scholar
  71. Zhao, S., J. Fang, C. Peng, Z. Tang & S. Piao, 2006. Patterns of fish species richness in China’s lakes. Global Ecology and Biogeography 15: 386–394.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Rosemberg Fernandes Menezes
    • 1
    • 2
  • Finn Borchsenius
    • 2
  • Jens-Christian Svenning
    • 2
  • Martin Søndergaard
    • 1
  • Torben L. Lauridsen
    • 1
    • 4
  • Frank Landkildehus
    • 1
  • Erik Jeppesen
    • 1
    • 3
    • 4
  1. 1.Department of BioscienceAarhus UniversitySilkeborgDenmark
  2. 2.Department of BioscienceAarhus UniversityAarhusDenmark
  3. 3.Greenland Climate Research CentreGreenland Institute of Natural ResourcesNuukGreenland
  4. 4.Sino-Danish Centre for Education and Research (SDC)BeijingChina

Personalised recommendations