, Volume 686, Issue 1, pp 55–71 | Cite as

Efficiency of nutrient management in controlling eutrophication of running waters in the Middle Danube Basin

  • Vera IstvánovicsEmail author
  • Márk Honti
Primary Research Paper


Nutrient emission dropped significantly during the last two decades in the Danube Basin. To assess the effect of reduced nutrient loads on the trophic status of running waters, this regional study analyzed the relationships between nutrients (P and N) and suspended chlorophyll (Chl) using long-term monitoring data in Hungary. Including the upstream catchments of trans-boundary rivers, the study covered an approximate area of 400,000 km2, equivalent to the half of the entire Danube catchment. Decadal median Chl was unrelated to P and N concentrations in the whole data set and weakly related to total P (TP) at natural-moderately polluted (N-MP) sites, which were distinguished from highly polluted (HP) sites by using cutoff values for chloride, chemical oxygen demand and TP. At both the N-MP sites and most of the HP sites, Chl increased with channel length. This indicated that water residence time was a more important determinant of Chl than nutrients. Nutrient concentrations showed a significant downward trend in time at half of our sites. With a nearly equal frequency, a parallel trend might or might not occur in Chl. The apparent efficiency of nutrient management was expressed as the quotient of the slopes of linear trends in Chl and nutrients. At sites within 150 km from source, this efficiency was marginal. In larger rivers, efficiency improved steeply. The highest efficiency was observed in the downstream reach of the Danube (upstream length >1,300 km) where P availability might frequently limit algal growth. The results suggest that eutrophication management in rivers should be based on Chl response functions, rather than universal nutrient criteria. Four Chl response classes were identified based on the observed longitudinal P and Chl gradients.


Sestonic chlorophyll River size Water residence time Nutrient management efficiency Chlorophyll response functions Water Framework Directive 



This study was financially supported by the National Science Foundation (OTKA) Grant No. 63340. We are grateful to Dr. Adrienne Clement for providing the data and the maps to construct Fig. 1. Two anonymous referees helped us to improve a previous version of this paper.


  1. Basu, B. K. & F. R. Pick, 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnology and Oceanography 41: 1572–1577.CrossRefGoogle Scholar
  2. Biggs, B. J. F., 2000. Eutrophication of streams and rivers: dissolved nutrient-chlorophyll relationships for benthic algae. Journal of North American Benthological Society 19: 17–31.CrossRefGoogle Scholar
  3. Billen, G., J. Garnier & P. Hanset, 1994. Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER model applied to the Seine river system. Hydrobiologia 289: 119–137.CrossRefGoogle Scholar
  4. Billen, G., J. Garnier, J. Némery, M. Sebilo, A. Sferratore, S. Barles, P. Benoit & M. Benôıt, 2007. A long-term view of nutrient transfers through the Seine river continuum. Science of the Total Environment 375: 80–97.PubMedCrossRefGoogle Scholar
  5. Catt, J. A., 2001. The agricultural importance of loess. Earth-Science Reviews 54: 213–229.CrossRefGoogle Scholar
  6. Chételat, J., F. R. Pick & P. B. Hamilton, 2006. Potamoplankton size structure and taxonomic composition: influence of river size and nutrient concentrations. Limnology and Oceanography 51: 681–689.CrossRefGoogle Scholar
  7. Csathó, P. & L. Radimszky, 2011. Towards sustainable agricultural NP turnover in the EU 27 countries: a review. In Tóth, G. & T. Németh (eds), Land Quality and Land Use Information in the European Union. JRC-IES, Ispra: 69–86.Google Scholar
  8. Csathó, P., I. Sisák, L. Radimszky, S. Lushaj, H. Spiegel, M. T. Nikolova, N. Nikolov, P. Čermák, J. Klir, A. Astover, A. Karklins, S. Lazauskas, J. Kopiński, C. Hera, E. Dumitru, M. Manojlovic, D. Bogdanović, S. Torma, M. Leskošek & A. Khristenko, 2007. Agriculture as a source of phosphorus causing eutrophication in Central and Eastern Europe. Soil Use and Management Supplement 23: 36–56.CrossRefGoogle Scholar
  9. Dodds, W. K., 2006. Eutrophication and trophic state in rivers and streams. Limnology and Oceanography 51: 671–680.CrossRefGoogle Scholar
  10. Dodds, W. K. & R. M. Oakes, 2004. A technique for establishing reference nutrient concentrations across watersheds affected by humans. Limnology and Oceanography: Methods 2: 333–341.CrossRefGoogle Scholar
  11. Dodds, W. K. & E. B. Welch, 2000. Establishing nutrient criteria in streams. Journal of North American Benthological Society 19: 186–196.CrossRefGoogle Scholar
  12. Dokulil, M. 2006. Assessment of potamoplankton and primary productivity in the river Danube: A review. In Proceedings 36th International Conference of IAD. Austrian Committee Danube Research/IAD, Vienna. ISBN 13: 978-3-9500723-2-7, 1-5.Google Scholar
  13. Erős, T., D. Schmera & R. S. Shick, 2011. Network thinking in riverscape conservation—a graph-based approach. Biological Conservation 144: 181–192.Google Scholar
  14. Francoeur, S. N., 2001. Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. Journal of North American Benthological Society 20: 358–368.CrossRefGoogle Scholar
  15. Froelich, P. N., 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnology and Oceanography 33: 649–668.CrossRefGoogle Scholar
  16. Hansen, E. & M. Christ, 2001. EPA’s Nutrient Criteria Recommendations and Their Application in Nutrient Ecoregion XI.
  17. Hein, T., C. Baranyi, G. J. Herndl, W. Wanek & F. Schiemer, 2003. Allochthonous and autochthonous particulate organic matter in floodplains of the River Danube: the importance of hydrological connectivity. Freshwater Biology 48: 220–232.CrossRefGoogle Scholar
  18. Honti, M., V. Istvánovics & Z. Kozma, 2008. Assessing phytoplankton growth in River Tisza (Hungary). Verhandlungen der internationle Vereinigung für throretische und angewandte Limnologie 30: 87–89.Google Scholar
  19. Honti, M., V. Istvánovics & Á. Kovács, 2010. Balancing between retention and flushing in river networks - optimizing nutrient management to improve trophic state. Science of the Total Environment 408: 4712–4721.PubMedCrossRefGoogle Scholar
  20. ICPDR, 2005. The Danube River Basin District. Part A—basin-wide overview.
  21. Istvánovics, V. & M. Honti, 2011. Phytoplankton growth in three rivers: the role of meroplankton and the benthic retention hypothesis. Limnology and Oceanography 56: 1439–1452.CrossRefGoogle Scholar
  22. Istvánovics, V., M. Honti, L. Vörös & Z. Kozma, 2010. Phytoplankton dynamics in relation to connectivity, flow dynamics and resource availability—the case of a large, lowland river, the Hungarian Tisza. Hydrobiologia 637: 121–141.CrossRefGoogle Scholar
  23. Jackson, L. J., T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2007. A comparison of shallow Danish and Canadian lakes and implications of climate change. Freshwater Biology 52: 1782–1792.CrossRefGoogle Scholar
  24. Kiss, K. T., 1994. Trophic level and eutrophication of the River Danube in Hungary. Verhandlungen der internationle Vereinigung für throretische und angewandte Limnologie 25: 1688–1691.Google Scholar
  25. Leopold, L. B., M. G. Wolman & J. P. Miller, 1964. Fluvial Processes in Geomorphology. WH Freeman and Company, San Francisco.Google Scholar
  26. Meybeck, M., 1982. Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science 282: 401–450.CrossRefGoogle Scholar
  27. Neal, C., H. Davies & M. Neal, 2008. Water quality, nutrients and the water framework directive in an agricultural region: the lower Humber Rivers, northern England. Journal of Hydrology 350: 232–245.CrossRefGoogle Scholar
  28. Ódor, L., I. Horváth & U. Fügedi, 1997. Low-density geochemical mapping in Hungary. Journal of Geochemical Exploration 60: 55–66.CrossRefGoogle Scholar
  29. Reynolds, C. S., 1992. Eutrophication and the management of planktonic algae: what Vollenweider couldn’t tell us. In Sutcliffe, D. W. & J. G. Jones (eds), Eutrophication: Research and Application to Water Supply. FBA, Ambleside: 4–29.Google Scholar
  30. Reynolds, C. S., 2000. Hydroecology of river plankton: the role of variability in channel flow. Hydrological Processes 14: 3119–3132.CrossRefGoogle Scholar
  31. Reynolds, C. S. & J.-P. Descy, 1996. The production, biomass, and structure of phytoplankton in large rivers. Archiv für Hydrobiologie, Supplementband Large Rivers 113: 161–187.Google Scholar
  32. Reynolds, C. S., J.-P. Descy & J. Padisák, 1994. Are phytoplankton dynamics in rivers so different from those in shallow lakes? Hydrobiologia 289: 1–7.CrossRefGoogle Scholar
  33. Robson, A. J. & C. Neal, 1997. A summary of regional water quality for Eastern UK rivers. Science of the Total Environment 194(195): 15–37.CrossRefGoogle Scholar
  34. Royer, T. V., M. B. David, L. E. Gentry, C. A. Mitchell, K. M. Starks, T. I. Heatherly & M. R. Whiles, 2008. Assessment of chlorophyll-a as a criterion for establishing nutrient standards in the streams and rivers of Illinois. Journal of Environmental Quality 37: 437–447.PubMedCrossRefGoogle Scholar
  35. Sabater, S., J. Artigas, C. Durán, M. Pardos, A. M. Romaní, E. Tornés & I. Ylla, 2008. Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River). Science of the Total Environment 404: 196–206.PubMedCrossRefGoogle Scholar
  36. Salminen, R., M. J. Batista, M. Bidovec, A. Demetriades, B. De Vivo, W. De Vos, M. Duris, A. Gilucis, V. Gregorauskiene, J. Halamic, P. Heitzmann, A. Lima, G. Jordan, G. Klaver, P. Klein, J. Lis, J. Locutura, K. Marsina, A. Mazreku, P. J. O’Connor, S. Å. Olsson, R.-T. Ottesen, V. Petersell, J. A. Plant, S. Reeder, I. Salpeteur, H. Sandström, U. Siewers, A. Steenfelt & T. Tarvainen, 2005. Geochemical Atlas of Europe. Part 1—Background Information, Methodology, and Maps. Association of the Geological Surveys of the European Union/Geological Survey of Finland,
  37. Sas, H., 1989. Lake Restoration by Reduction of Nutrient Loading Expectations, Experiences, Extrapolation. Academic Verlag, St Augustin.Google Scholar
  38. Schreiber, H., H. Behrendt, L. T. Constantinescu, I. Cvitanic, D. Drumea, D. Jabucar, S. Juran, B. Pataki, S. Snishko & M. Zessner, 2005. Nutrient emissions from diffuse and point sources into the River Danube and its main tributaries for the period of 1998–2000—results and problems. Water Science and Technology 51: 283–290.PubMedGoogle Scholar
  39. Smith, V. H., 2003. Eutrophication of freshwater and marine ecosystems: a global problem. Environmental Science and Pollution Research 10: 126–139.PubMedCrossRefGoogle Scholar
  40. Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environment Pollution 100: 179–196.CrossRefGoogle Scholar
  41. Søballe, D. M. & B. L. Kimmel, 1987. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes and impoundments. Ecology 68: 1943–1954.CrossRefGoogle Scholar
  42. Somlyódy, L. & P. Shanahan, 1998. Municipal Wastewater Treatment in Central and Eastern Europe. Present Situation and Cost-Effective Development Strategies. World Bank, Washington.Google Scholar
  43. Somlyódy, L., K. Buzás, A. Clement & Z. Melicz, 1999. Strategies for approximating EU legislation in Hungary: the Sajó River case. Water Science and Technology 40: 87–94.CrossRefGoogle Scholar
  44. Stutter, M. I., B. O. L. Demars & S. J. Langan, 2010. River phosphorus cycling: separating biotic and abiotic uptake during short-term changes in sewage effluent loading. Water Research 44: 4425–4436.PubMedCrossRefGoogle Scholar
  45. Swanson, C. D. & R. W. Bachmann, 1976. A model of algal exports in some Iowa streams. Ecology 57: 1076–1080.CrossRefGoogle Scholar
  46. Thorp, J. H., M. C. Thoms & M. D. DeLong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.CrossRefGoogle Scholar
  47. Uherkovich, G., 1971. A Tisza Lebegô Paránynövényei (in Hungarian). Szolnok Megyei Múzeum Adattár, Szolnok, HungaryGoogle Scholar
  48. Van Nieuwenhuyse, E. E. & J. R. Jones, 1996. Phosphorus–chlorophyll relationship in temperate streams and its variation with stream catchment area. Canadian Journal of Fisheries and Aquatic Sciences 53: 99–105.CrossRefGoogle Scholar
  49. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  50. Verasztó, C., K. T. Kiss, C. Sipkay, L. Gimesi, C. Vadai-Fülöp, D. Türei & L. Hufnagel, 2010. Long-term dynamic patterns and diversity of phytoplankton communities in a large eutrophic river (the case of River Danube, Hungary). Applied Ecology and Environmental Research 8: 329–349.Google Scholar
  51. Vollenweider, R. A. & J. J. Kerekes, 1982. Background and Summary Results of the OECD Cooperative Programme on Eutrophication. OECD, Paris.Google Scholar
  52. Vörös, L., K. V. Balogh, S. Herodek & K. T. Kiss, 2000. Underwater light conditions, phytoplankton photosynthesis and bacterioplankton production in the Hungarian section of the River Danube. Archiv für Hydrobiologie, Supplement band Large Rivers 11: 511–532.Google Scholar
  53. Walks, D. J., 2007. Persistence of plankton in flowing water. Canadian Journal of Fisheries and Aquatic Sciences 64: 1693–1702.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Water Resources Management Group of the Hungarian Academy of Sciences, Department of Environmental and Sanitary EngineeringBudapest University of Technology and EconomicsBudapestHungary
  2. 2.EAWAGDübendorfSwitzerland

Personalised recommendations