, Volume 686, Issue 1, pp 73–89 | Cite as

Structure of rotifer assemblages in shallow waterbodies of semi-arid northwest Iran differing in salinity and vegetation cover

Primary Research Paper


Rotifers are important components of freshwater ecosystems and sensitive indicators of environmental changes. This study was carried out to test the hypothesis that, among environmental variables, salinity and aquatic vegetation have significant effects on rotifer diversity and abundance. We analyzed rotifer assemblages in the littoral zone of 22 hydromorphologically different shallow waterbodies in West Azarbaijan, Iran. Rotifer diversity and abundance were not significantly associated with basin morphology, but were positively correlated with the percentage of vegetation cover. Salinity and electroconductivity positively influenced rotifer abundance, while they had significantly negative effects on rotifer diversity. Halobiont species from the genera Brachionus, Hexarthra, Synchaeta, and Notholca reached their highest abundances in the waterbodies with pronouncedly higher salinities. Our findings are in agreement with recent records showing that distinct rotifer assemblages occur in saline and non-saline waterbodies. The role of salinity and aquatic vegetation as the most important environmental drivers in shaping rotifer communities is confirmed. The results of this study suggested that environmental changes could be significant on the micro-biogeographical level, and that the interaction of salinity and observed human impact, i.e., trophic level, promote rotifer abundance as sensitive indicators of environmental changes.


Rotifer Environmental variables Diversity Abundance 


  1. Angeler, D. G., M. Alvarez-Cobelas & S. Sánchez-Carrillo, 2010. Evaluating environmental conditions of a temporary pond complex using rotifer emergence from dry soils. Ecological Indicators 10: 545–549.CrossRefGoogle Scholar
  2. Basu, B. K., J. Kalff & B. Pinel-Alloul, 2000. The influence of macrophyte beds on plankton communities and their export from fluvial lakes in the St Lawrence River. Freshwater Biology 45: 373–382.CrossRefGoogle Scholar
  3. Bērziņŝ, B. & B. Pejler, 1987. Rotifer occurrence in relation to pH. Hydrobiologia 147: 107–116.CrossRefGoogle Scholar
  4. Bērziņŝ, B. & B. Pejler, 1989. Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223–231.CrossRefGoogle Scholar
  5. Bielańska-Grajner, I. & A. Gładysz, 2010. Planktonic rotifers in mining lakes in the Silesian Upland: relationship to environmental parameters. Limnologica 40: 67–72.CrossRefGoogle Scholar
  6. Bielańska-Grajner, I., A. Cudak & T. Mieczan, 2011. Epiphytic rotifer abundance and diversity in moss patches in bogs and fens in the Polesie National Park (Eastern Poland). International Review of Hydrobiology 96: 29–38.CrossRefGoogle Scholar
  7. Bini, L. M., L. C. G. Vieira, J. Machado & L. F. M. Velho, 2007. Concordance of species composition patterns among microcrustaceans, rotifers and testate amoebae in a shallow pond. International Review of Hydrobiology 92: 9–22.CrossRefGoogle Scholar
  8. Branco, C. W. C., M. I. A. Rocha, G. F. S. Pinto, G. A. Gômara & R. De Filippo, 2002. Limnological features of Funil Reservoir (R.J., Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes & Reservoirs: Research and Management 7: 87–92.CrossRefGoogle Scholar
  9. Brönmark, C. & L. A. Hansson, 1998. The Biology of Lakes and Ponds. Oxford University Press, New York: 216 pp.Google Scholar
  10. Burdis, R. M. & R. J. H. Hoxmeier, 2011. Seasonal zooplankton dynamics in main channel and backwater habitats of the Upper Mississippi River. Hydrobiologia 667: 69–87.CrossRefGoogle Scholar
  11. Castro, B. B., S. C. Antunes, R. Pereira, A. M. V. M. Soares & F. Gonçalves, 2005. Rotifer community structure in three shallow lakes: seasonal fluctuations and explanatory factors. Hydrobiologia 543: 221–232.CrossRefGoogle Scholar
  12. Céréghino, R., J. Biggs, B. Oertli & B. Declerck, 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6.CrossRefGoogle Scholar
  13. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth: 192 pp.Google Scholar
  14. Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia 506: 23–27.CrossRefGoogle Scholar
  15. Dagne, A., A. Herzig, C. D. Jersabek & Z. Tadesse, 2008. Abundance, species composition and spatial distribution of planktonic rotifers and crustaceans in Lake Ziway (Rift Valley, Ethiopia). International Review of Hydrobiology 93: 210–226.CrossRefGoogle Scholar
  16. De Smet, W. H., 1998. Preparation of rotifer trophy for light microscopy. Hydrobiologia 387(388): 117–121.CrossRefGoogle Scholar
  17. Derry, A. M., E. E. Prepas & P. D. N. Hebert, 2003. A comparison of zooplankton communities in saline lake water with variable anion composition. Hydrobiologia 505: 199–215.CrossRefGoogle Scholar
  18. Devetter, M. & J. Seda, 2006. Regulation of rotifer community by predation of Cyclops vicinus (Copepoda) in the Římov Reservoir in spring. International Review of Hydrobiology 91: 101–112.CrossRefGoogle Scholar
  19. Enríquez García, C., S. Nandini & S. S. S. Sarma, 2009. Seasonal dynamics of zooplankton in Lake Huetzalin, Xochimilco (Mexico City, Mexico). Limnologica 39: 283–291.CrossRefGoogle Scholar
  20. Halse, S. A., R. J. Shiel & W. D. Williams, 1998. Aquatic invertebrates of Lake Gregory, northwestern Australia, in relation to salinity and ionic composition. Hydrobiologia 381: 15–29.CrossRefGoogle Scholar
  21. Havens, K. E., J. R. Beaver & T. L. East, 2007. Plankton biomass partitioning in a eutrophic subtropical lake: comparison with results from temperate lake ecosystems. Journal of Plankton Research 29: 1087–1097.CrossRefGoogle Scholar
  22. Holst, H., H. Zimmermann-Timm & H. Kausch, 2002. Longitudinal and transverse distribution of plankton rotifers in the potamal of the River Elbe (Germany) during late summer. International Review of Hydrobiology 87: 267–280.CrossRefGoogle Scholar
  23. Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen, 1998. The structuring role of submerged macrophytes in lakes. Springer, New York: 423 pp.Google Scholar
  24. Karabin, A., 1985. Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. I. Structural and quantitative features. Polish Journal of Ecology 33: 567–616.Google Scholar
  25. Kaya, M., D. Fontaneto, H. Segers & A. Altindağ, 2010. Temperature and salinity as interacting drivers of species richness of planktonic rotifers in Turkish continental waters. Journal of Limnology 69: 297–304.CrossRefGoogle Scholar
  26. Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas, 2 Vols. Borntraeger, Berlin: 673 pp.Google Scholar
  27. Kruk, C., L. Rodríguez-Gallego, M. Meerhoff, F. Quintans, G. Lacerot, N. Mazzeo, F. Scasso, J. C. Paggi, E. H. M. Peeters & M. Scheffer, 2009. Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay). Freshwater Biology 54: 2628–2641.CrossRefGoogle Scholar
  28. Kuczyńska-Kippen, N., 2005. The species diversity of rotifers (Rotifera) of differentiated macrophyte habitats of Lake Budzyńskie. Roczniki Akademii Rolniczejw Poznaniu – CCCLXXIII. Bot.-Stec. 9: 171–176.Google Scholar
  29. Kuczyńska-Kippen, N. & T. Joniak, 2010. The impact of water chemistry on zooplankton occurrence in two types (field versus forest) of small water bodies. International Review of Hydrobiology 95: 130–141.CrossRefGoogle Scholar
  30. Lair, N. & P. Reyes-Marchant, 1997. The potamoplankton of the Middle Loire and the role of the ‘moving littoral’ in downstream transfer of algae and rotifers. Hydrobiologia 356: 33–52.CrossRefGoogle Scholar
  31. Lau, S. S. S. & S. N. Lane, 2002. Nutrient and grazing factors in relation to phytoplankton level in a eutrophic shallow lake: the effect of low macrophyte abundance. Water Research 36: 3593–3601.PubMedCrossRefGoogle Scholar
  32. Malekzadeh Viayeh, R., 2010. An overview of the rotifers of the family Notommatidae (Rotifera: Monogononta: Ploima) from Iran. Caspian Journal of Environmental Sciences 8: 127–139.Google Scholar
  33. May, L. & M. O’Hare, 2005. Changes in rotifer species composition and abundance along a trophic gradient in Loch Lomond, Scotland, UK. Hydrobiologia 546: 397–404.CrossRefGoogle Scholar
  34. Miracle, M. & M. Serra, 1989. Salinity and temperature influence in rotifer life history characteristics. Hydrobiologia 186(187): 81–102.CrossRefGoogle Scholar
  35. National Geographical Organization, 2006. National Gazetteer of West Azarbaijan. INGO Publications: 468 pp.Google Scholar
  36. Neschuk, N., M. Claps & N. Gabellone, 2002. Planktonic rotifers of a saline-lowland river: the Salado River (Argentina). International Journal of Limnology 38: 191–198.CrossRefGoogle Scholar
  37. Obertegger, U., H. A. Smith, G. Flaim & R. L. Wallace, 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662: 157–162.CrossRefGoogle Scholar
  38. Pejler, B. & B. Bērziņŝ, 1993. On relation to substrate in sessile rotifers. Hydrobiologia 259: 121–124.CrossRefGoogle Scholar
  39. Rajashekhar, M., K. Vijaykumar & P. Zeba, 2010. Seasonal variations of zooplankton community in freshwater reservoir Gulbarga District, Karnataka, South India. International Journal of Systems Biology 2: 6–11.Google Scholar
  40. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.CrossRefGoogle Scholar
  41. Segers, H., 2004. Rotifera: Monogononta. In Yule, C. M. & H. S. Yong (eds), Freshwater Invertebrates of the Malaysian Region. Academy of Sciences, Malaysia and Monash University Malaysia, Kuala Lumpur: 112–126.Google Scholar
  42. Segers, H., 2007. Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564: 1–104.Google Scholar
  43. Segers, H., 2008. Global diversity of rotifers (Phylum Rotifera) in freshwater. Hydrobiologia 595: 49–59.CrossRefGoogle Scholar
  44. Segers, H. & L. Sanoamuang, 2007. Note on a highly diverse rotifer assemblage (Rotifera: Monogononta) in a Laotian rice paddy and adjacent pond. International Review of Hydrobiology 92: 640–646.CrossRefGoogle Scholar
  45. Silva, A. M., J. E. L. Barbosa, P. R. Medeiros, R. M. Rocha, M. A. Lucena Filho & D. F. Silva, 2009. Zooplankton (Cladocera and Rotifera) variations along a horizontal salinity gradient and during two seasons (dry and rainy) in a tropical inverse estuary. Pan-American Journal of Aquatic Sciences 4: 226–237.Google Scholar
  46. Špoljar, M., I. Habdija, B. Primc-Habdija & L. Sipos, 2005. Impact of environmental variables and food availability on rotifer assemblage in the karstic barrage lake Visovac (Krka River, Croatia). International Review of Hydrobiology 90: 555–579.CrossRefGoogle Scholar
  47. Špoljar, M., I. Habdija & B. Primc-Habdija, 2007. The influence of the lotic and lentic stretches on the zooseston flux through the Plitvice Lakes (Croatia). Annales de Limnologie-International Journal of Limnology 43: 29–40.CrossRefGoogle Scholar
  48. Stefanidis, K. & E. Papastergiadou, 2010. Influence of hydrophyte abundance on the spatial distribution of zooplankton in selected lakes in Greece. Hydrobiologia 656: 55–65.CrossRefGoogle Scholar
  49. ter Braak, C. J. F. & P. Šmilauer, 1999. Canoco for Windows Version 4.2. GLW-CPRO, Wageningen, The Netherlands.Google Scholar
  50. Vieira, A. C. B., L. L. Ribeiro, D. P. N. Santos & M. C. Crispim, 2009. Correlation between the zooplanktonic community and environmental variables in a reservoir from the Northeastern semi-arid. Acta Limnologica Brasiliensia 21: 349–358.Google Scholar
  51. Wallace, R. L., E. J. Walsh, M. L. Arroyo & P. L. Starkweather, 2005. Life on the edge: rotifers from springs and ephemeral waters in the Chihuahuan Desert, Big Bend National Park (Texas, USA). Hydrobiologia 546: 147–157.CrossRefGoogle Scholar
  52. Wallace, R. L., E. J. Walsh, T. Schröder, R. Rico-Martínez & J. V. Rios-Arana, 2008. Species composition and distribution of rotifers in Chihuahuan Desert waters of México: is everything everywhere? Verhandlungen des Internationalen Verein Limnologie 30: 73–76.Google Scholar
  53. Walsh, E. J., T. Schröder, R. L. Wallace, J. V. Ríos Arana & R. Rico-Martínez, 2008. Rotifers from selected inland saline waters in the Chihuahuan Desert of México. Saline Systems 4: 7.PubMedCrossRefGoogle Scholar
  54. Walz, N., 1995. Rotifer populations in plankton communities: energetics and life history strategies. Cellular and Molecular Life Sciences 51: 437–453.CrossRefGoogle Scholar
  55. Wang, Q., Y. Yang & J. Chen, 2009. Impact of environment on the spatio-temporal distribution of rotifers in the tidal Guangzhou segment of the Pearl River estuary, China. International Review of Hydrobiology 94: 688–705.CrossRefGoogle Scholar
  56. Wen, X. L., Y. L. Xi, F. P. Qian, G. Zhang & X. L. Xiang, 2011. Comparative analysis of rotifer community structure in five subtropical shallow lakes in East China: role of physical and chemical conditions. Hydrobiologia 661: 303–316.CrossRefGoogle Scholar
  57. Williams, W. D., 1999. Salinisation: a major threat to water resources in the arid and semi-arid regions of the world. Lakes and Reservoirs: Research and Management 4: 85–91.CrossRefGoogle Scholar
  58. Williams, P., M. Whitfield, J. Biggs, S. Bray, G. Fox, P. Nicolet & D. Sear, 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115: 329–341.CrossRefGoogle Scholar
  59. Zhou, S., X. Huang & Q. Cai, 2009. Temporal and spatial distributions of rotifers in Xiangxi Bay of the three Gorges Reservoir, China. International Review of Hydrobiology 94: 542–559.CrossRefGoogle Scholar
  60. Zimmermann-Timm, H., H. Holst & H. Kausch, 2007. Spatial dynamics of rotifers in a large lowland river, the Elbe, Germany: how important are retentive shoreline habitats for the plankton community? Hydrobiologia 593: 49–58.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Artemia and Aquatic Animals Research InstituteUrmia UniversityUrmiaIran
  2. 2.Division of Zoology, Department of Biology, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations