Hydrobiologia

, Volume 684, Issue 1, pp 69–82 | Cite as

Internal loading of phosphorus from sediments of Lake Pontchartrain (Louisiana, USA) with implications for eutrophication

  • Eric D. Roy
  • Nhan T. Nguyen
  • Sibel Bargu
  • John R. White
Primary Research Paper

Abstract

Diffusive flux of bioavailable soluble reactive phosphorus (SRP) across the sediment–water interface is one mechanism by which sediments can be a source of phosphorus to the water column in aquatic systems and contribute to primary productivity. This process is dependent on sediment biogeochemistry and SRP concentration gradients at the sediment–water interface. In systems subjected to episodic external pulses of nutrient-rich water, SRP concentration gradients can have potential implications for diffusive flux. In this study, we sought to investigate two hypotheses: (1) diffusive flux of SRP from sediments is a significant source of SRP in the annual budget for the oligohaline Lake Pontchartrain estuary and (2) under SRP-depleted water column conditions following large episodic, external pulses of nitrogen-rich Mississippi River water to the estuary, internal SRP loading by diffusive flux can regenerate SRP in the water column to previously observed levels rapidly. Our specific objectives were to: (i) determine sediment, water column, and phytoplankton characteristics at multiple locations in the estuary, (ii) measure rates of SRP diffusive flux from sediments using intact cores under aerobic and anaerobic incubations, (iii) estimate the potential for water column SRP regeneration by diffusive flux under SRP-depleted conditions using a simple model, and (iv) estimate the annual load of SRP from the sediments by diffusive flux. Results indicate that diffusive flux of SRP from Lake Pontchartrain sediments likely contributes ~30–44% of the annual SRP load to the estuary. Further, internal SRP loading by diffusion has the potential to regenerate SRP in SRP-depleted waters to previously observed concentrations in <60 days. Our findings suggest that a sequence of events is feasible where external pulses of nitrogen-rich water produce phosphorus-limited conditions, followed by an internal pulse of SRP from sediments to restore nitrogen-limited conditions. This internal SRP load may be an important contributor in promoting blooms of nitrogen-fixing harmful algae under summertime low-nutrient conditions.

Keywords

Internal nutrient load Diffusion Harmful algal blooms Estuary Bonnet Carré Spillway Nutrient flux 

References

  1. Anderson, J. M., 1976. An ignition method for determination of total phosphorus in lake sediments. Water Res 10: 329–331.CrossRefGoogle Scholar
  2. Bargu, S., J. R. White, C. Li, J. Czubakowski & R. W. Fulweiler, 2011. Effects of freshwater input on nutrient loading, phytoplankton biomass, and cyanotoxin production in an oligohaline estuarine lake. Hydrobiologia 661: 377–389.CrossRefGoogle Scholar
  3. Bostic, E. M., J. R. White, K. R. Reddy & R. Corstanje, 2010. Evidence of phosphorus distribution in wetland soil after the termination of nutrient loading. Soil Science Society of American Journal 74: 1808–1815.CrossRefGoogle Scholar
  4. Brammer, A. J., Z. R. del Rey, E. A. Spalding & M. A. Poirrier, 2007. Effects of the 1997 Bonnet Carre Spillway opening on infaunal macroinvertebrates in Lake Pontchartrain, Louisiana. J Coastal Res 23: 1292–1303.CrossRefGoogle Scholar
  5. Capone, D. G. & R. P. Kiene, 1988. Comparison of microbial dynamics in marine and freshwater sediments—contrasts in anaerobic carbon catabolism. Limnol Oceanogr 33: 725–749.CrossRefGoogle Scholar
  6. Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8: 559–568.CrossRefGoogle Scholar
  7. Carpenter, S. R., D. Ludwig & W. A. Brock, 1999. Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9: 751–771.CrossRefGoogle Scholar
  8. Cloern, J. E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210: 223–253.CrossRefGoogle Scholar
  9. DeLaune, R. D., R. P. Gambrell, A. Jugsujinda, I. Devai & A. Hou, 2008. Total Hg, methyl Hg and other toxic heavy metals in a northern Gulf of Mexico estuary: Louisiana Pontchartrain Basin. Journal of Environmental Science and Health Part A 43: 1006–1015.CrossRefGoogle Scholar
  10. Dignum, M., H. C. P. Matthijs, R. Pel, H. J. Laanbroek & L. R. Mur, 2005. Nutrient limitation of freshwater cyanobacteria. In Huisman, J., H. C. P. Matthijs & P. M. Visser (eds), Harmful cyanobacteria. Springer, Dordrecht: 65–86.CrossRefGoogle Scholar
  11. Dortch, Q. & S. Achee, 1998. Lake Pontchartrain 1997 algal bloom: identification, toxicity, and similar occurrences elsewhere in Louisiana coastal waters. In Malek-Wiley, R. R. (ed.), Clean enough?. Lake Pontchartrain Basin Foundation, New Orleans: 19–20.Google Scholar
  12. Fisher, M. M. & K. R. Reddy, 2001. Phosphorus flux from wetland soils affected by long-term nutrient loading. Journal of Environmental Quality 30: 261–271.PubMedCrossRefGoogle Scholar
  13. Flocks, J., J. Kindinger, M. Marot & C. Holmes, 2009. Sediment characterization and dynamics in Lake Pontchartrain, Louisiana. J Coastal Res 54: 113–126.CrossRefGoogle Scholar
  14. Gunners, A. & S. Blomqvist, 1997. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions—an experimental comparison of freshwater and brackish marine systems. Biogeochemistry 37: 203–226.CrossRefGoogle Scholar
  15. Havens, K. E., K. R. Jin, N. Iricanin & R. T. James, 2007. Phosphorus dynamics at multiple time scales in the pelagic zone of a large shallow lake in Florida, USA. Hydrobiologia 581: 25–42.CrossRefGoogle Scholar
  16. Kemp, W. M., 1989. Estuarine chemistry. In Day, J. W., C. A. S. Hall, W. M. Kemp & A. Yáñez-Arancibia (eds), Estuarine ecology. Wiley, New York: 79–143.Google Scholar
  17. Li, C. Y., N. Walker, A. X. Hou, I. Georgiou, H. Roberts, E. Laws, J. A. McCorquodale, E. Weeks, X. F. Lie & J. Crochet, 2008. Circular plumes in Lake Pontchartrain estuary under wind straining. Estuar Coast Shelf Sci 80: 161–172.CrossRefGoogle Scholar
  18. Malecki, L. M., J. R. White & K. R. Reddy, 2004. Nitrogen and phosphorus flux rates from sediment in the lower St. John River estuary. Journal of Environmental Quality 33: 1545–1555.PubMedCrossRefGoogle Scholar
  19. Malecki-Brown, L. M. & J. R. White, 2009. Phosphorus sequestration in aluminum amended soils from a municipal wastewater treatment wetland. Soil Sci Soc Am J 73: 852–861.CrossRefGoogle Scholar
  20. Malecki-Brown, L. M., J. R. White & K. R. Reddy, 2007. Soil biogeochemical characteristics influenced by alum application in a municipal wastewater treatment wetland. Journal of Environmental Quality 36: 1904–1913.PubMedCrossRefGoogle Scholar
  21. McCorquodale, J. A., I. Georgiou & K. Haralampides, 2002. Bottom dissolved oxygen and salinity in Lake Pontchartrain. In Penland, S., A. Beall, & J. Kindinger (eds), Environmental Atlas of the Lake Pontchartrain Basin, Lake Pontchartrain Basin Foundation, U.S. Geological Survey Open File Report 02-206, New Orleans. Available online http://pubs.usgs.gov/of/2002/of02-206/env-issues/dissolved-oxygen.html. Accessed 23 Jan 2011.
  22. McCorquodale, J. A., R. J. Roblin, I. Y. Georgiou & K. A. Haralampides, 2009. Salinity, nutrient, and sediment dynamics in the Pontchartrain Estuary. J Coastal Res 54: 71–87.CrossRefGoogle Scholar
  23. Mize, S. V. & D. K. Demcheck, 2009. Water quality, phytoplankton communities in Lake Pontchartrain during, after the Bonnet Carré Spillway Opening, April to October 2008 in Louisiana, USA. Geo-Mar Lett 29: 431–440.CrossRefGoogle Scholar
  24. Moore, P. A. & K. R. Reddy, 1994. Role of Eh and pH on phosphorus geochemistry in sediments of Lake Okeechobee, Florida. Journal of Environmental Quality 23: 955–964.CrossRefGoogle Scholar
  25. Morse, J. W., F. J. Millero, J. C. Cornwell & D. Rickard, 1987. The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Science Reviews 24: 1–42.CrossRefGoogle Scholar
  26. Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. J Ecol 29: 280–329.CrossRefGoogle Scholar
  27. Nixon, S. W., 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–219.Google Scholar
  28. Parsons, T. R., Y. Maita & C. M. A. Lali, 1984. Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford.Google Scholar
  29. Penland, S., P. McCarty, A. Beall & D. Maygarden, 2002. Environmental overview, regional description of the Lake Pontchartrain Basin. In Penland, S., A. Beall, & J. Kindinger (eds), Environmental Atlas of the Lake Pontchartrain Basin, Lake Pontchartrain Basin Foundation, U.S. Geological Survey Open File Report 02-206, New Orleans. http://pubs.usgs.gov/of/2002/of02-206/a. Accessed 23 Jan 2011.
  30. Rabalais, N. N., R. E. Turner, Q. Dortch, D. Justic, V. J. Bierman & W. J. Wiseman, 2002. Nutrient-enhanced productivity in the northern Gulf of Mexico: past, present, and future. Hydrobiologia 475: 39–63.CrossRefGoogle Scholar
  31. Reddy, K. R., Y. Wang, W. F. Debusk, M. M. Fisher & S. Newman, 1998. Forms of soil phosphorus in selected hydrologic units of the Florida Everglades. Soil Sci Soc Am J 62: 1134–1147.CrossRefGoogle Scholar
  32. Reddy, K. R., M. M. Fisher, Y. Wang, J. R. White & T. A. James, 2007. Potential effects of sediment dredging on internal phosphorus loading in a shallow, subtropical lake. Lake and Reservoir Management 23: 27–38.CrossRefGoogle Scholar
  33. Reddy, K. R., S. Newman, T. Z. Osborne, J. R. White & H. C. Fitz, 2011. Phosphorus cycling in the greater Everglades ecosystem: legacy phosphorus implications for management and restoration. Critical Reviews in Environmental Science and Technology 41: 149–186.CrossRefGoogle Scholar
  34. Reed-Andersen, T., S. R. Carpenter & R. C. Lathrop, 2000. Phosphorus flow in a watershed-lake ecosystem. Ecosystems 3: 561–573.CrossRefGoogle Scholar
  35. Rozan, T. F., M. Taillefert, R. E. Trouwborst, B. T. Glazer, S. Ma, J. Herszage, L. M. Valdes, K. S. Price & G. W. Luther, 2002. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms. Limnol Oceanogr 47: 1346–1354.CrossRefGoogle Scholar
  36. Ruttenberg, K. C. & R. A. Berner, 1993. Authigenic apatite formation and burial in sediments from non-welling, continental margin environments. Geochim Cosmochim Acta 57: 991–1007.CrossRefGoogle Scholar
  37. Shaffer, G., 1986. Phosphate pumps and shuttles in the Black sea. Nature 321: 515–517.CrossRefGoogle Scholar
  38. Silcio, K., K. Ball, R. Risley & P. D. Voegel, 2010. Changing nutrient levels in Lake Maurepas following human population shifts in response to Hurricane Katrina. Chemistry & Ecology 26: 327–337.CrossRefGoogle Scholar
  39. Sundby, B., L. G. Anderson, P. O. J. Hall, A. Iverfeldt, M. M. R. Vanderloeff & S. F. G. Westerlund, 1986. The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochim Cosmochim Acta 50: 1281–1288.CrossRefGoogle Scholar
  40. Thompson, P. A., H. M. Oh & G. Y. Rhee, 1994. Storage of phosphorus in nitrogen-fixing Anabaena flos-aquae (cyanophyceae). J Phycol 30: 267–273.CrossRefGoogle Scholar
  41. Thayer, G., 1971. Phytoplankton production and the distribution of nutrients in a shallow, unstratified estuarine system near Beaufort, NC. Chesapeake Science 12: 240–253.CrossRefGoogle Scholar
  42. Turner, R. E., Q. Dortch & N. N. Rabalais, 1999. Effects of the 1997 Bonnet Carré opening on nutrients and phytoplankton in Lake Pontchartrain. Report to the Lake Pontchartrain Basin Foundation. Lake Pontchartrain Basin Foundation, Metairie.Google Scholar
  43. Turner, R. E., Q. Dortch, D. Justic & E. M. Swenson, 2002. Nitrogen loading into an urban estuary: Lake Pontchartrain (Louisiana U.S.A.). Hydrobiologia 487: 137–152.CrossRefGoogle Scholar
  44. Turner, R. E., Q. Dortch & N. N. Rabalais, 2004. Inorganic nitrogen transformations at high loading rates in an oligohaline estuary. Biogeochemistry 68: 411–422.CrossRefGoogle Scholar
  45. Upchurch, J. B., J. K. Edzwald & C. R. O’Melia, 1974. Phosphates in sediments of Pamlico estuary. Environ Sci Technol 8: 56–58.CrossRefGoogle Scholar
  46. U.S. Environmental Protection Agency (USEPA), 1993. Methods for the determination of inorganic substances in environmental samples. Environmental Monitoring Systems Laboratory, Cincinnati.Google Scholar
  47. Wetzel, R. G., 2001. Limnology: lake and river ecosystems, 3rd ed. Academic Press, San Diego.Google Scholar
  48. White, J. R., R. W. Fulweiler, C. Y. Li, S. Bargu, N. D. Walker, R. R. Twilley & S. E. Green, 2009. Mississippi River flood of 2008: observations of a large freshwater diversion on physical, chemical, and biological characteristics of a shallow estuarine lake. Environ Sci Technol 43: 5599–5604.PubMedCrossRefGoogle Scholar
  49. White, J. R. & K. R. Reddy, 1999. The influence of nitrate and phosphorus loading on denitrifying enzyme activity in Everglades wetland soils. Soil Sci Soc Am J 63: 1945–1954.CrossRefGoogle Scholar
  50. Wilson, M. A. & S. R. Carpenter, 1999. Economic valuation of freshwater ecosystem services in the United States: 1991–1997. Ecol Appl 9: 772–783.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Eric D. Roy
    • 1
  • Nhan T. Nguyen
    • 1
  • Sibel Bargu
    • 2
  • John R. White
    • 1
  1. 1.Wetland & Aquatic Biogeochemistry Laboratory, Department of Oceanography and Coastal Sciences, School of the Coast and EnvironmentLouisiana State UniversityBaton RougeUSA
  2. 2.Phytoplankton Ecology & HAB Laboratory, Department of Oceanography and Coastal Sciences, School of the Coast and EnvironmentLouisiana State UniversityBaton RougeUSA

Personalised recommendations