Hydrobiologia

, Volume 687, Issue 1, pp 163–177 | Cite as

Role of deep sponge grounds in the Mediterranean Sea: a case study in southern Italy

  • Marzia Bo
  • Marco Bertolino
  • Giorgio Bavestrello
  • Simonepietro Canese
  • Michela Giusti
  • Michela Angiolillo
  • Maurizio Pansini
  • Marco Taviani
SPONGE RESEARCH DEVELOPMENTS

Abstract

The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 ± 1.1 specimens m−2 (approximately 230 gWW m−2 of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 ± 0.7 specimens m−2, approximately 315 gWW m−2 of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m−2). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic–pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 ± 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter.

Keywords

Deep benthos Porifera Mediterranean Sea Biodiversity Pelagic–benthic coupling 

Notes

Acknowledgements

We are grateful to Masters, Crew and shipboard staff onboard R/V Astrea and R/V Urania during MoBioMarCal (August 2009) and ARCADIA (March 2010) missions, respectively. We would like to thank Dr. Sinniger (Bangor University, UK) for his suggestions concerning zoanthid taxonomy. The work in the Amendolara Bank has been conducted by ISPRA (ex ICRAM), within the project no. 327, and financed by the Calabrian Regional Council for Environment. The work undertaken through MoBioMarCal is affiliated to the European Census of Marine Life. The ROV investigation of the Bari Canyon has been partly funded by the E.U. HERMIONE program (contract number 226354) and ship-time provided by CNR. This is ISMAR-CNR, Bologna scientific contribution no. 1742

References

  1. Babic, K., 1922. Monactinellida und Tetractinellida des Adriatischen Meeres. Zoologische Jahrbücher, Abteilung für Systematik, Geographie und Biologie der Tiere 46: 217–302.Google Scholar
  2. Ballesteros, E., 2006. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanography and Marine Biology 44: 123–195.Google Scholar
  3. Barthel, D., 1996. Fish eggs and pentacrinoids in Weddell Sea hexactinellids: further examples for the structuring role of sponges in Antarctic benthic ecosystems. Polar Biology 17: 91–99.CrossRefGoogle Scholar
  4. Barthel, D. & J. Gutt, 1992. Sponge associations in the eastern Weddell Sea. Antarctic Science 4: 137–150.CrossRefGoogle Scholar
  5. Beaulieu, S. E., 2001. Life on glass houses: sponge stalk communities in the deep sea. Marine Biology 138: 803–817.CrossRefGoogle Scholar
  6. Bertolino, M., 2011. Sponges of the Coralligenous Community in the Mediterranean Sea. Università Politecnica delle Marche, PhD Thesis: 1–162.Google Scholar
  7. Beuck, L., A. Freiwald & M. Taviani, 2010. Spatiotemporal bioerosion patterns in deep-water scleractinians from off Santa Maria di Leuca (Apulia, Ionian Sea). Deep Sea Research II 57: 458–470.CrossRefGoogle Scholar
  8. Bianchelli, S., C. Gambi, A. Pusceddu & R. Danovaro, 2008. Trophic conditions and meiofaunal assemblages in the Bari Canyon and the adjacent open slope (Adriatic Sea). Chemistry and Ecology 24: 101–109.CrossRefGoogle Scholar
  9. Bo, M., G. Bavestrello, S. Canese, M. Giusti, M. Angiolillo, C. Cerrano, E. Salvati & S. Greco, 2011a. Coral assemblages off the Calabrian Coast (South Italy) with new observations on living colonies of Antipathes dichotoma. Italian Journal of Zoology 78: 231–242.CrossRefGoogle Scholar
  10. Bo, M., M. Bertolino, M. Borghini, M. Castellano, A. Covazzi Harriague, C. G. Di Camillo, G. P. Gasparini, C. Misic, P. Povero, K. Schroeder & G. Bavestrello, 2011b. Characteristics of the mesophotic megabenthic assemblage of the Vercelli Seamount (North Tyrrhenian Sea). PLoS One 6: e16357.PubMedCrossRefGoogle Scholar
  11. Bo, M., S. Canese, M. Giusti, C. Spaggiari, M. Angiolillo, E. Salvati, S. Greco & G. Bavestrello, 2011c. Mesophotic coral forests of the Italian seas. Proceedings of the World Conference on Marine Biodiversity, Scotland: 23.Google Scholar
  12. Boehlert, G. W. & A. Genin, 1987. A review of the effects of seamounts on biological processes. In Keating, B. H., P. Fryer, R. Batiza & G. W. Boehlert (eds), Seamounts, Islands and Atolls. Geophysical Monograph Series, Vol. 43: 319–334.Google Scholar
  13. Borojevic, R., L. Cabioc & C. Levi, 1968. Inventaire de la Faune Marine de Roscoff: Spongiares. Edition de la Station Biologique de Roscoff: 2–41.Google Scholar
  14. Bourcier, M. & H. Zibrowius, 1973. Les “boues rouges” déversées dans le canyon de la Cassidaigne (région de Marseille). Observations en soucoupe plongeante SP 350 (juin 1971) et résultats de dragages. Téthys 4: 811–842.Google Scholar
  15. Boury-Esnault, N., M. Pansini & M. J. Uriz, 1994. Spongiaires bathyaux de la Mer d’Alboran et du Golfe Ibéro-Marocain. Mémoires du Museum National D’Histoire Naturelle 160: 1–174.Google Scholar
  16. Burton, M., 1926. Description of South African sponges collected in the South African Marine Survey. Part I. Myxospongia and Astrotetraxonida. Fisheries Bulletin. Fisheries and Marine Biological Survey Division, Union of South Africa Reports 4: 1–29.Google Scholar
  17. Burton, M., 1930. Norwegian sponges from the Norman Collection. Proceedings of the Zoological Society of London 2: 487–546.Google Scholar
  18. Burton, M., 1959. Spongia. The Zoology of Iceland 2: 1–71.Google Scholar
  19. Cardenas, P., 2010. Phylogeny, Taxonomy and Evolution of the Astrophorida (Porifera, Demospongiae). University of Bergen, PhD Thesis: 1–80.Google Scholar
  20. Carlier, A., E. Le Guilloux, K. Olu, J. Sarrazin, F. Mastrototaro, M. Taviani & J. Clavier, 2009. Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea). Marine Ecology Progress Series 397: 125–137.CrossRefGoogle Scholar
  21. Cecere, E. & C. Perrone, 1988. First contribution to the knowledge of macrobenthic flora of the Amendolara Sea-Mount (Ionian Sea). Oebalia 14: 43–67.Google Scholar
  22. Ceramicola, S., D. Civile, A. Caburlotto, A. Cova, D. Accettella, M. Caffau, D. Cotterle, P. Diviacco, N. Wardell & R. Ramella, 2008. Analisi morfo-sedimentaria del margine calabro ionico settentrionale. Proceedings of the GNGTS 2008 Conference: 423–424.Google Scholar
  23. Clark, M. R., A. A. Rowden, T. Schlacher, A. Williams, M. Consalvey, K. I. Stocks, A. D. Rogers, T. D. O’Hara, M. White, T. M. Shank & J. M. Hall-Spencer, 2010. The ecology of seamounts: structure, function, and human impacts. Annual Reviews of Marine Science 2: 253–278.CrossRefGoogle Scholar
  24. Clavico, E. E. G., G. Muricy, B. A. P. da Gama, D. Batista, C. R. R. Ventura & R. C. Pereira, 2006. Ecological roles of national products from the marine sponge Geodia corticostylifera. Marine Biology 148: 479–488.CrossRefGoogle Scholar
  25. Conway, K. W., J. V. Barrie, W. C. Austin & J. L. Luternauer, 1991. Holocene sponge bioherms on the western Canadian continental shelf. Continental Shelf Research 11: 771–790.CrossRefGoogle Scholar
  26. D’Addabbo Gallo, M., L. De Morone & S. Grimaldi de Zio, 1987. Heterotardigrada of the Amendolara Shoal, High Ionian Sea. In Bertolani, R. (ed.), Biology of Tardigrades. Proceedings of the Fourth International Symposium on the Tardigrada, September 1985, Modena, Italy. Selected Symposia and Monographs: 93–101.Google Scholar
  27. Di Geronimo, I., R. La Perna, A. Rosso & R. Sanfilippo, 1998. Notes on two upper-circalittoral assemblages from the Amendolara Bank (Northern Ionian Sea). Bollettino Accademia Gioenia di Scienze Naturali 30: 243–262.Google Scholar
  28. Duineveld, G. C. A., M. S. S. Lavaleye, M. J. N. Bergman, H. de Stigter & F. Mienis, 2007. Trophic structure of a cold-water coral mound community (Rockall Bank, NE Atlantic) in relation to the near-bottom particle supply and current regime. Bulletin of Marine Science 81: 449–467.Google Scholar
  29. Ferrer Hernández, F., 1914. Esponjas del Cantábrico. Parte 2°. III. Myxospongida. IV. Tetraxonida. V. Triaxonida. Trabajos del Museo Nacional de Ciencias Naturales, serie Zoológica 17: 3–44.Google Scholar
  30. Freiwald, A., L. Beuck, A. Rüggeberg, M. Taviani & D. Hebbeln, 2009. The white coral community in the Central Mediterranean Sea revealed by ROV surveys. Oceanography 22: 58–74.CrossRefGoogle Scholar
  31. Gerdes, D., E. Isla, R. Knust, K. Mintenbeck & S. Rossi, 2008. Response of Antarctic benthic communities to disturbance: first results from the artificial benthic disturbance experiment on the eastern Weddell Sea Shelf, Antarctica. Polar Biology 31: 1469–1480.CrossRefGoogle Scholar
  32. Grancini, G., A. Lavenia & F. Mosetti, 1969. Ricerche oceanografiche nel Golfo di Taranto (Indagini fisiche del luglio 1968). Atti dell’Istituto Veneto di Scienze, Lettere ed Arti 127: 309–326.Google Scholar
  33. Hogg, M. M., O. S. Tendal, K. W. Conway, S. A. Pomponi, R. W. M. van Soest, J. Gutt, M. Krautter & J. M. Roberts, 2010. Deep-Sea Sponge Grounds: Reservoirs of Biodiversity. UNEPWCMC Biodiversity Series no. 32. UNEP‐WCMC, Cambridge: 1–88.Google Scholar
  34. Hooper, J. N. A., 2000. ‘Sponguide’. Guide to Sponge Collection and Identification. http://www.qm.qld.gov.au/organisation/sections/SessileMarineInvertebrates/spong.pdf.
  35. Ilan, M., N. Ben-Eliahu & B. S. Galil, 1994. Three deep water sponges from the Eastern Mediterranean and their associated fauna. Ophelia 39: 45–54.Google Scholar
  36. Ilan, M., M. Gugel, B. S. Galil & D. Janussen, 2003. Small bathyal sponge species from East Mediterranean revealed by a non-regular soft bottom sampling technique. Ophelia 57: 145–160.Google Scholar
  37. Jacob, U., S. Terpstra & T. Brey, 2003. High-Antarctic regular sea urchins—the role of depth and feeding in niche separation. Polar Biology 26: 99–104.Google Scholar
  38. Klitgaard, A. B., 1995. The fauna associated with outer shelf and upper slope sponges (Porifera, Demospongiae) at the Faroe Islands, northeastern Atlantic. Sarsia 80: 1–22.Google Scholar
  39. Klitgaard, A. B. & O. S. Tendal, 2004. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Progress in Oceanography 61: 57–98.Google Scholar
  40. Levi, C., 1960. Spongiaires des côtes occidentals africaines. Bullettin de l’Institut Francais d’Afrique Noire 22: 743–769.Google Scholar
  41. Levi, C., 1967. Spongiaires d’Afrique du Sud. (3) Tetractinellides. Transactions of the Royal Society of South Africa 37: 227–256.CrossRefGoogle Scholar
  42. Linares, C., R. Coma, J. Garrabou, D. Díaz & M. Zabala, 2008. Size distribution, density and disturbance in two Mediterranean gorgonians: Paramuricea clavata and Eunicella singularis. Journal of Applied Ecology 45: 688–699.CrossRefGoogle Scholar
  43. Longo, C., F. Mastrototaro & G. Corriero, 2002. Sponge fauna associated with white corals from the Western Ionian Sea. Bollettino dei Musei e degli Istituti Biologici dell’Università di Genova 66–67: 118.Google Scholar
  44. Longo, C., F. Mastrototaro & G. Corriero, 2005. Sponge fauna associated with a Mediterranean deep-sea coral bank. Journal of the Marine Biological Association of the United Kingdom 85: 1341–1352.CrossRefGoogle Scholar
  45. Magnino, G., M. F. Gravina, P. Righini, F. Serena & M. Pansini, 1999. Due Demosponge Lithistidi nuove per i mari italiani. Biologia Marina Mediterranea 6: 391–393.Google Scholar
  46. Maldonado, M., 1992. Demosponges of the red coral bottoms from the Alboran Sea. Journal of Natural History 26: 1131–1161.CrossRefGoogle Scholar
  47. Maldonado, M., 2002. Family Pachastrellidae Carter, 1875. In Hooper, J. N. A. & R. W. M. van Soest (eds), Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic, Plenum Publisher, New York, Boston, Dordrecht, London, Moscow: 141–164.Google Scholar
  48. Martinelli, M., G. Bavestrello, B. Calcinai & M. Taviani, 2007. Poriferi associati ai banchi di Coralli bianchi del Canale di Sicilia a Sud di Malta. Proceedings of the 68° UZI Congress, Lecce.Google Scholar
  49. Mastrototaro, F., G. D’Onghia, G. Corriero, A. Matarrese, P. Maiorano, P. Panetta, M. Ghepardi, C. Longo, A. Rosso, F. Sciuto, R. Sanfilippo, C. Gravili, F. Boero, M. Taviani & A. Tursi, 2010. Biodiversity of the white coral and sponge community off Cape Santa Maria di Leuca (Mediterranean Sea). Deep Sea Research II 57: 412–430.CrossRefGoogle Scholar
  50. McDonald, J. I., A. K. McGuinness & J. N. A. Hooper, 2003. Influence of re-orientation on alignment to flow and tissue production in a Spongia sp. (Porifera: Demospongiae: Dictyoceratida). Journal of Experimental Marine Biology and Ecology 296: 13–22.CrossRefGoogle Scholar
  51. Montenegro-González, J. & A. Acosta, 2010. Habitat preference of Zoantharia genera depends on host sponge morphology. Universitas Scientiarum 15: 110–121.Google Scholar
  52. Panetta, P., B. Dell’Angelo & F. Fiordiponti, 1985. I Poliplacofori del Banco dell’ Amendolara (Golfo di Taranto). Oebalia 11: 767–769.Google Scholar
  53. Pansini, M., 1987. Report on a collection of Demospongiae from soft bottoms of the eastern Adriatic Sea. In Clifford Jones, W. (ed.), European Contributions to the Taxonomy of Sponges. Sherkin Island Marine Station: 41–53.Google Scholar
  54. Pansini, M., & C. Longo, 2003. A review of the Mediterranean Sea sponge biogeography with, in appendix, a list of the demosponges hitherto recorded from this sea. Biogeographia, XXIV, Marine Biogeography of the Mediterranean Sea: Patterns and Dynamics of Biodiversity: 59–90.Google Scholar
  55. Pansini, M. & C. Longo, 2008. Porifera. In La checklist della flora e della fauna dei mari italiani (a cura di G. Relini). Ministero dell’Ambiente e tutela del territorio, Roma. Biologia Marina Mediterranea 15: 42–66.Google Scholar
  56. Pansini, M. & B. Musso, 1991. Sponges from trawl-exploitable bottoms of Ligurian and Tyrrhenian Seas: distribution and ecology. Marine Ecology 12: 317–329.CrossRefGoogle Scholar
  57. Perrone, A., 1985. Report on the biological survey of Amendolara Seamount: Nudibranchia of Amendolara Seamount. Journal of Molluscan Studies 51: 102.Google Scholar
  58. Previati, M., M. Palma, G. Bavestrello, C. Falugi & C. Cerrano, 2010. Reproductive biology of Parazoanthus axinellae (Schmidt, 1862) and Savalia savaglia (Bertoloni, 1819) (Cnidaria, Zoantharia) from the NW Mediterranean coast. Marine Ecology 31: 555–565.CrossRefGoogle Scholar
  59. Pulitzer-Finali, G., 1983. A collection of Mediterranean Demospongiae (Porifera) with, in appendix, a list of the Demospongiae hitherto recorded from the Mediterranean Sea. Annali del Museo civico di storia naturale Giacomo Doria 84: 445–621.Google Scholar
  60. Reimer, J. D., F. Sinniger & C. P. Hickman Jr., 2008. Zoanthid diversity (Anthozoa: Hexacorallia) in the Galapagos Island: a molecular examination. Coral Reefs 27: 641–654.CrossRefGoogle Scholar
  61. Rice, A. J., M. H. Thurston & A. L. New, 1990. Dense aggregations of a hexactinellid sponge, Pheronema carpenteri in the Porcupine Seabight (Northeast Atlantic Ocean) and possible causes. Progress in Oceanography 24: 179–196.CrossRefGoogle Scholar
  62. Ridente, D., F. Foglini, D. Minisini, F. Trincardi & G. Verdicchio, 2007. Shelf-edge erosion, sediment failure and inception of Bari Canyon on the south-western Adriatic margin (Central Mediterranean). Marine Geology 246: 193–207.CrossRefGoogle Scholar
  63. Rogers, A. D., 1999. The biology of Lophelia pertusa (Linnaeus, 1758) and other deep-water reef-forming corals and impacts from human activities. International Review of Hydrobiology 84: 315–406.Google Scholar
  64. Romagnoli, C., 2004. Segnalazione di terrazzi deposizionali sommersi nelle Isole Eolie Occidentali (Alicudi-Filicudi). Memorie Descrittive della Carta Geologica d’Italia 58: 155–158.Google Scholar
  65. Rossi, S. & P. Colantoni, 1976. Appunti sul Banco Amendolara nel Golfo di Taranto. Giornale di Geologia 2: 277–284.Google Scholar
  66. Rossi, S. & G. Gabbianelli, 1978. Geomorfologia del Golfo di Taranto. Bollettino della Società Geologica Italiana 97: 423–437.Google Scholar
  67. Rosso, A., A. Vertino, I. Di Geronimo, R. Sanfilippo, F. Sciuto, R. Di Geronimo, D. Violanti, C. Corselli, M. Taviani, F. Mastrototaro & A. Tursi, 2010. Hard- and soft-bottom thanatofacies from the Santa Maria di Leuca deep-water coral province, Mediterranean. Deep Sea Research II 57: 360–379.CrossRefGoogle Scholar
  68. Salvati, E., M. Angiolillo, M. Bo, G. Bavestrello, M. Giusti, A. Cardinali, S. Puce, C. Spaggiari, S. Greco & S. Canese, 2010. The population of Errina aspera (Hydrozoa, Stylasteridae) of the Messina Strait (Mediterranean Sea). Journal of the Marine Biological Association of the United Kingdom 90: 1331–1336.CrossRefGoogle Scholar
  69. Samadi, S., T. Schlacher & B. Richer de Forges, 2007. Seamount benthos. In Pitcher, T. J., et al. (eds), Seamounts: Ecology, Fisheries & Conservation. Blackwell, Oxford: 119–140.Google Scholar
  70. Sarà, L. & J. Vacelet, 1973. Ecologie des Démosponges. In Grassé, P. P. (ed.), Traité de Zoologie. VIII, Spongiaires. Masson, Paris: 462–576.Google Scholar
  71. Stephens, J., 1915. Sponges of the coasts of Ireland. I. The Triaxonidand and part of the Tetraxonida. Fisheries, Ireland Scientific Investigations 4: 1–43.Google Scholar
  72. Strusi, A., A. Tursi, E. Cecere, C. Montanaro & P. Panetta, 1985. The Amendolara Seamount (High Ionian Sea): general description. Oebalia 11: 379–388.Google Scholar
  73. Swain, T. D. & J. L. Wulff, 2007. Diversity and specificity of Caribbean sponge-zoanthid symbioses: a foundation for understanding the adaptive significance of symbioses and generating hypotheses about higher-order systematics. Biological Journal of the Linnaean Society 92: 695–711.CrossRefGoogle Scholar
  74. Taviani, M. & L. Angeletti, 2009. Un giardino sepolto nel Mar Adriatico. Darwin 32: 74–81.Google Scholar
  75. Taviani, M., A. Freiwald & H. Zibrowius, 2005a. Deep coral growth in the Mediterranean Sea: an overview. In Freiwald, A. & J. M. Roberts (eds), Cold-Water Corals and Ecosystems. Springer-Verlag, Berlin Heidelberg: 137–156.Google Scholar
  76. Taviani, M., A. Remia, C. Corselli, A. Freiwald, E. Malinverno, F. Mastrototaro, A. Savini & A. Tursi, 2005b. First geo-marine survey of living cold-water Lophelia reefs in the Ionian Sea (Mediterranean basin). Facies 50: 409–417.CrossRefGoogle Scholar
  77. Topsent, E., 1894. Etude monographique des Spongiaires de France I. Tetractinellida. Archives de Zoologie expérimentale et générale 2: 259–400.Google Scholar
  78. Topsent, E., 1904. Spongiaires des Açores. Resultats des Campagnes Scientifique du Prince de Monaco 25: 1–279.Google Scholar
  79. Topsent, E., 1913. Spongiaires provenant des campagnes scientifiques de la «Princesse-Alice» dans les Mers du Nord (1898–1899, 1906–1907). Resultats des Campagnes Scientifique du Prince de Monaco 45: 3–67.Google Scholar
  80. Topsent, E., 1928. Spongiaires de l’Atlantique et de la Méditerranée, provenant des croisières du Prince Albert I de Monaco. Resultats des Campagnes Scientifique du Prince de Monaco 74: 1–373.Google Scholar
  81. Tortonese, E., 1965. Fauna d’Italia. Echinodermata. Edizioni Calderini, Bologna: 380.Google Scholar
  82. Trincardi, F., F. Foglini, G. Verdicchio, A. Asioli, A. Correggiari, D. Minisini, A. Piva, A. Remia, D. Ridente & M. Taviani, 2007. The impact of cascading currents on the Bari Canyon System, SW Adriatic margin (Central Mediterranean). Marine Geology 246: 208–230.CrossRefGoogle Scholar
  83. Tunesi, L., G. Diviacco & G. Mo, 2001. Observations by submersible on the biocoenosis of the deep-sea corals off Portofino promontory (Northwestern Mediterranean Sea). In Willison, J. H. M., J. Hall, S. Gass, E. L. R. Kenchington, M. Butler & P. Doherty (eds), Proceedings of the First International Symposium on Deep-Sea Corals. Ecology Action Centre and Nova Scotia Museum, Halifax: 76–87.Google Scholar
  84. Turchetto, M., A. Boldrin, L. Langone, S. Miserocchi, T. Tesi & F. Foglini, 2007. Particle transport in the Bari Canyon (southern Adriatic Sea). Marine Geology 246: 231–247.CrossRefGoogle Scholar
  85. Turon, X., I. Tarjuelo & M. J. Uriz, 1998. Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defence. Functional Ecology 12: 631–639.CrossRefGoogle Scholar
  86. Uriz, M. J., 1978. Contribución a la Fauna de Esponjas (Demospongia) de Cataluña. Universitad de Barcelona. PhD Thesis: 1–367.Google Scholar
  87. Uriz, M. J., 1981. Estudio sistemático de las esponjas Astrophorida (Demospongia) de los fondos de pesca de Arrastre, entre Tossa y Calella (Cataluña). Boletin del Instituto Español de Oceanografia 6: 8–58.Google Scholar
  88. Uriz, M. J., 1982. Estudio sistemático de las esponjas del order Axinellida (Demosponga) de la Costa Brava (Cataluña). Actas II Simposio ibérico de estudios del Bentos Marino 2: 57–80.Google Scholar
  89. Uriz, M. J., 1983. Présence de l’espèce Esperiopsis fucorum (Demospongia, Poecilosclerida) en Méditerranée. Vie Milieu 33: 237–240.Google Scholar
  90. Uriz, M. J., 1984. Descripción de nuevas esponjas del litoral de Namibia (sudoeste de África). Resultados Expediciones Científicas 12: 107–116.Google Scholar
  91. Uriz, M. J., 1988. Deep-water sponges from the continental shelf and slope off Namibia (Southwest Africa): classes Hexactinellida and Demospongia. Monografías de Zoología Marina 3: 9–157.Google Scholar
  92. Uriz, M. J. & M. A. Bibiloni, 1984. Esponjas Homosclerofóridas (Demospongia) del Litoral Catalán. Miscellánea Zoológica 8: 7–12.Google Scholar
  93. Uriz, M. J. & M. Maldonado, 2000. The genus Acanthodendrilla in the Mediterranean Sea with description of a new species. Zoosystema 22: 401–410.Google Scholar
  94. Uriz, M. J. & D. Rosell, 1990. Sponges from bathyal depths (1000–1750 m) in the Western Mediterranean Sea. Journal of Natural History 24: 373–391.CrossRefGoogle Scholar
  95. Vacelet, J., 1960. Eponges de la Méditerranée Nord-Occidentale récoltées par le “Président-Théodore-Tissier” (1958). Recherches et Travaux de Institut des Pêches Maritimes 24: 257–272.Google Scholar
  96. Vacelet, J., 1961. Spongiaires (Démosponges) de la région de Bonifacio (Corse). Recherches et Travaux de la Station marine d’Endoume 22: 351–354.Google Scholar
  97. Vacelet, J., 1969. Éponges de la roche du large et de l’étage bathyal de Méditerranée. Mémoires du Muséum National d’Histoire Naturelle 59: 146–219.Google Scholar
  98. Vacelet, J., 1996. Nouvelles signalisations d’éponges profondes en Méditerranée. Mésogée 55: 107–114.Google Scholar
  99. Vertino, A., A. Savini, A. Rosso, I. Di Geronimo, F. Mastrototaro, R. Sanfilippo, G. Gay & G. Etiope, 2010. Benthic habitat characterization and distribution from two representative sites of the deep-water SML Coral Mound Province (Mediterranean). Deep Sea Research II 57: 380–396.CrossRefGoogle Scholar
  100. Voultsiadou-Koukouras, E. & R. W. M. van Soest, 1993. Suberitidae (Demospongiae, Hadromerida) from the North Aegean Sea. Beaufortia-Institute of Taxonomic Zoology (Zoological Museum) University of Amsterdam 43: 176–186.Google Scholar
  101. Wainwright, S. A. & M. A. R. Koehl, 1976. The nature of flow and the reaction of benthic cnidarian to it. In Mackie, G. O. (ed.), Coelenterate Ecology and Behavior. Plenum, New York: 5–21.Google Scholar
  102. Warner, G. F., 1977. On the shape of passive suspension feeders. In Keegan, B. F., P. O’Ceidigh & P. J. S. Boaden (eds), Biology of Benthic Organisms. Pergamon, Oxford/New York: 567–576.Google Scholar
  103. Zibrowius, H., 1985. Spongiaires hexactinellides vivant en mer Ionienne par 2000 m de profondeur. Rapports Commission Internationale pour l’Exploration Scientifique de la Mer Méditerraneé 29: 335–338.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Marzia Bo
    • 1
  • Marco Bertolino
    • 1
  • Giorgio Bavestrello
    • 1
  • Simonepietro Canese
    • 2
  • Michela Giusti
    • 2
  • Michela Angiolillo
    • 2
  • Maurizio Pansini
    • 3
  • Marco Taviani
    • 4
  1. 1.Dip. Scienze della Vita e dell’AmbienteUniversità Politecnica delle MarcheAnconaItaly
  2. 2.ISPRARomeItaly
  3. 3.Dip. per lo Studio del Territorio e delle sue RisorseUniversità degli Studi di GenovaGenoaItaly
  4. 4.ISMAR-CNRBolognaItaly

Personalised recommendations